## From nilpotent element to finite W-algebra

#### Yung-Ning Peng

#### Department of Mathematics National Central University

TMS Annual Meeting, at Academia Sinica

Jan 18, 2022

1 / 70

## 1) Finite W-algebra of $\mathfrak{gl}_M$

- 2 Yangian associated to  $\mathfrak{gl}_m$
- 3 Presentation of W-algebra in terms of Yangian
- 4 Super version of the story

#### 1) Finite W-algebra of $\mathfrak{gl}_M$

## 2 Yangian associated to $\mathfrak{gl}_m$

3 Presentation of W-algebra in terms of Yangian

4 Super version of the story

- 1) Finite W-algebra of  $\mathfrak{gl}_M$
- 2 Yangian associated to  $\mathfrak{gl}_m$
- 3 Presentation of W-algebra in terms of Yangian
- Super version of the story

- 1) Finite W-algebra of  $\mathfrak{gl}_M$
- 2 Yangian associated to  $\mathfrak{gl}_m$
- 3 Presentation of W-algebra in terms of Yangian
- 4 Super version of the story

## 1) Finite W-algebra of $\mathfrak{gl}_M$

- 2 Yangian associated to  $\mathfrak{gl}_m$
- 3 Presentation of W-algebra in terms of Yangian
- 4 Super version of the story

- Consider  $e \in M_M(\mathbb{C}) \cong \mathfrak{gl}_M(\mathbb{C})$ .
- Recall that e is called nilpotent if  $e^k = 0$  for some k large enough.
- Question: How many nilpotent matrices in  $M_M(\mathbb{C})$  do we have, up to similarity (the number of orbits of nilpotent matrices under the  $GL_M(\mathbb{C})$ -conjugation)?

4 / 70

#### $\bullet\,$ Base field is $\mathbb{C},$ so every matrix can be turned into its Jordan form.

- e is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- **Answer:**  $\mathcal{P}(M)$ , the partition function.
- $\mathcal{P}(M) =$  the number of ways to express M as a sum of positive integers
  - = the number of partitions of M
  - = the number of Young diagrams with *M* boxes

- $\bullet\,$  Base field is  $\mathbb{C},$  so every matrix can be turned into its Jordan form.
- e is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- **Answer:**  $\mathcal{P}(M)$ , the partition function.
- $\mathcal{P}(M) =$  the number of ways to express M as a sum of positive integers
  - = the number of partitions of M
  - = the number of Young diagrams with *M* boxes

- $\bullet$  Base field is  $\mathbb{C},$  so every matrix can be turned into its Jordan form.
- e is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- **Answer:**  $\mathcal{P}(M)$ , the partition function.
- $\mathcal{P}(M) =$  the number of ways to express M as a sum of positive integers
  - = the number of partitions of M
  - = the number of Young diagrams with *M* boxes

- $\bullet$  Base field is  $\mathbb{C},$  so every matrix can be turned into its Jordan form.
- e is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- **Answer:**  $\mathcal{P}(M)$ , the partition function.
- $\mathcal{P}(M) =$  the number of ways to express M as a sum of positive integers
  - = the number of partitions of M
  - = the number of Young diagrams with *M* boxes

- $\bullet\,$  Base field is  $\mathbb{C},$  so every matrix can be turned into its Jordan form.
- e is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- **Answer:**  $\mathcal{P}(M)$ , the partition function.
- $\mathcal{P}(M) =$  the number of ways to express M as a sum of positive integers
  - = the number of partitions of M
  - = the number of Young diagrams with M boxes

## Example

- Consider  $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) = (4, 3, 1, 1)$ , a partition of 9.
- It corresponds to a nilpotent  $9 \times 9$  matrix  $e = J_4 \oplus J_3 \oplus J_1 \oplus J_1$ , where  $J_k$  is the Jordan block of size k with eigenvalue 0. For example,  $J_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- $\lambda$  corresponds to the following Young diagram (in French style)



• {Partitions}  $\stackrel{1:1}{\longleftrightarrow}$  {Nilpotent elements}  $\stackrel{1:1}{\longleftrightarrow}$  {Young diagrams}

# Example

- Consider  $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) = (4, 3, 1, 1)$ , a partition of 9.
- It corresponds to a nilpotent  $9 \times 9$  matrix  $e = J_4 \oplus J_3 \oplus J_1 \oplus J_1$ , where  $J_k$  is the Jordan block of size k with eigenvalue 0. For example,  $J_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- $\lambda$  corresponds to the following Young diagram (in French style)



• {Partitions}  $\stackrel{1:1}{\longleftrightarrow}$  {Nilpotent elements}  $\stackrel{1:1}{\longleftrightarrow}$  {Young diagrams}

# Finite W-algebra

- Let e ∈ g = gl<sub>M</sub>(ℂ) be given. One can associated a very complicated algebra structure to this e, called (finite) W-algebra.
- This structure is hidden in  $U(\mathfrak{g})$ , the universal enveloping algebra of  $\mathfrak{g}$ .
- We need many other things in order to define that structure.
- Recall the Lie bracket, or commutator notation

$$[x,y] := xy - yx, \quad \forall x, y \in \mathfrak{g}$$

- Take any x ∈ g. The derivation ad<sub>x</sub> : g → g given by ad<sub>x</sub>(y) := [x, y] is a linear map.
- If h ∈ g is semisimple (= diagonalizable), then g decomposes into a direct sum of eigenspaces of ad<sub>h</sub>.

7 / 70

# Finite W-algebra

- Let e ∈ g = gl<sub>M</sub>(C) be given. One can associated a very complicated algebra structure to this e, called (finite) W-algebra.
- This structure is hidden in  $U(\mathfrak{g})$ , the universal enveloping algebra of  $\mathfrak{g}$ .
- We need many other things in order to define that structure.
- Recall the Lie bracket, or commutator notation

$$[x,y] := xy - yx, \quad \forall x, y \in \mathfrak{g}$$

- Take any x ∈ g. The derivation ad<sub>x</sub> : g → g given by ad<sub>x</sub>(y) := [x, y] is a linear map.
- If h ∈ g is semisimple (= diagonalizable), then g decomposes into a direct sum of eigenspaces of ad<sub>h</sub>.

7 / 70

# Finite W-algebra

- Let e ∈ g = gl<sub>M</sub>(ℂ) be given. One can associated a very complicated algebra structure to this e, called (finite) W-algebra.
- This structure is hidden in  $U(\mathfrak{g})$ , the universal enveloping algebra of  $\mathfrak{g}$ .
- We need many other things in order to define that structure.
- Recall the Lie bracket, or commutator notation

$$[x,y] := xy - yx, \quad \forall x, y \in \mathfrak{g}$$

- Take any x ∈ g. The derivation ad<sub>x</sub> : g → g given by ad<sub>x</sub>(y) := [x, y] is a linear map.
- If h ∈ g is semisimple (= diagonalizable), then g decomposes into a direct sum of eigenspaces of ad<sub>h</sub>.

# Good grading and good pair

- We say (e, h) forms a good pair of  $\mathfrak{g}$  if
  - (i)  $e \in \mathfrak{g}$  is nilpotent and  $h \in \mathfrak{g}$  is semisimple.
  - (ii) ad  $_h$  gives a good grading on  $\mathfrak{g}$ , which means that

(a) eigenvalues(=gradings) of ad<sub>h</sub> are all integers;

$$\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}(j), \text{ where } \mathfrak{g}(j) := \{x \in \mathfrak{g} | [h, x] = jx\}$$

(b)  $e \in \mathfrak{g}(2)$  (that is, [h, e] = 2e).

(c)  $\operatorname{ad}_e: \mathfrak{g}(j) \to \mathfrak{g}(j+2)$  is injective for  $j \leq -1$ 

(d)  $\operatorname{ad}_e: \mathfrak{g}(j) \to \mathfrak{g}(j+2)$  is surjective for  $j \ge -1$ 

(iii) In addition, if g(j) = 0 for all odd *j*, then we say ad <sub>h</sub> gives an even good grading and (e, h) form an even good pair.

# Good grading and good pair

- We say (e, h) forms a good pair of g if
  - (i)  $e \in \mathfrak{g}$  is nilpotent and  $h \in \mathfrak{g}$  is semisimple.
  - (ii) ad  $_h$  gives a good grading on  $\mathfrak{g}$ , which means that

(a) eigenvalues(=gradings) of *ad<sub>h</sub>* are all integers:

$$\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}(j), \text{ where } \mathfrak{g}(j) := \{x \in \mathfrak{g} | [h, x] = jx\}$$

(b)  $e \in \mathfrak{g}(2)$  (that is, [h, e] = 2e).

(c)  $\operatorname{ad}_e: \mathfrak{g}(j) \to \mathfrak{g}(j+2)$  is injective for  $j \leq -1$ 

(d)  $\operatorname{\mathsf{ad}}_e:\mathfrak{g}(j)\to\mathfrak{g}(j+2)$  is surjective for  $j\geq -1$ 

(iii) In addition, if g(j) = 0 for all odd j, then we say ad h gives an even good grading and (e, h) form an even good pair.

# Good grading and good pair

• We say (e, h) forms a good pair of  $\mathfrak{g}$  if

(i)  $e \in \mathfrak{g}$  is nilpotent and  $h \in \mathfrak{g}$  is semisimple.

(ii) ad  $_h$  gives a good grading on  $\mathfrak{g}$ , which means that

(a) eigenvalues(=gradings) of *ad<sub>h</sub>* are all integers:

$$\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}(j), \text{ where } \mathfrak{g}(j) := \{x \in \mathfrak{g} | [h, x] = jx\}$$

(b)  $e \in \mathfrak{g}(2)$  (that is, [h, e] = 2e).

(c)  $\operatorname{ad}_e: \mathfrak{g}(j) \to \mathfrak{g}(j+2)$  is injective for  $j \leq -1$ 

(d)  $\operatorname{ad}_e: \mathfrak{g}(j) \to \mathfrak{g}(j+2)$  is surjective for  $j \geq -1$ 

(iii) In addition, if g(j) = 0 for all odd j, then we say ad h gives an even good grading and (e, h) form an even good pair.

#### Example (Dynkin Grading)

Take any nilpotent  $e \in \mathfrak{g}$ . Always exists an  $\mathfrak{sl}_2$ -triple (e, h, f) in  $\mathfrak{g}$  by Jacobson-Morozov Theorem. Then (e, h) is a good pair by  $\mathfrak{sl}_2$ -repn theory.

Let h =diag(1,0,-1), e = e<sub>13</sub>. Then f = e<sub>31</sub> will produce an sl<sub>2</sub>-triple (e, h, f) in gl<sub>3</sub>. The grading of gl<sub>3</sub> given by ad<sub>h</sub> is given as below

$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

Easy to check that (e, h) forms a good pair (but not even) for  $\mathfrak{gl}_3$ .

• Therefore, good pair always exists for any given *e*.

#### Example (Dynkin Grading)

Take any nilpotent  $e \in \mathfrak{g}$ . Always exists an  $\mathfrak{sl}_2$ -triple (e, h, f) in  $\mathfrak{g}$  by Jacobson-Morozov Theorem. Then (e, h) is a good pair by  $\mathfrak{sl}_2$ -repn theory.

Let h =diag(1,0,-1), e = e<sub>13</sub>. Then f = e<sub>31</sub> will produce an sl<sub>2</sub>-triple (e, h, f) in gl<sub>3</sub>. The grading of gl<sub>3</sub> given by ad<sub>h</sub> is given as below

$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

Easy to check that (e, h) forms a good pair (but not even) for  $\mathfrak{gl}_3$ .

• Therefore, good pair always exists for any given *e*.

#### Example (Dynkin Grading)

Take any nilpotent  $e \in \mathfrak{g}$ . Always exists an  $\mathfrak{sl}_2$ -triple (e, h, f) in  $\mathfrak{g}$  by Jacobson-Morozov Theorem. Then (e, h) is a good pair by  $\mathfrak{sl}_2$ -repn theory.

Let h =diag(1,0,-1), e = e<sub>13</sub>. Then f = e<sub>31</sub> will produce an sl<sub>2</sub>-triple (e, h, f) in gl<sub>3</sub>. The grading of gl<sub>3</sub> given by ad<sub>h</sub> is given as below

$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

Easy to check that (e, h) forms a good pair (but not even) for  $\mathfrak{gl}_3$ .

• Therefore, good pair always exists for any given *e*.

For a fixed *e*, there exist other good pairs in general.

Let e = e<sub>13</sub> (same as above) and h' =diag(1, 1, -1). An easy calculation shows that (e, h') also forms an even good pair for gl<sub>3</sub>. The grading of gl<sub>3</sub> given by ad h' is recored as

$$\left[\begin{array}{rrrr} 0 & 0 & 2 \\ 0 & 0 & 2 \\ -2 & -2 & 0 \end{array}\right]$$

• Fact: even good pair always exists for any given e.

For a fixed *e*, there exist other good pairs in general.

Let e = e<sub>13</sub> (same as above) and h' =diag(1,1,-1). An easy calculation shows that (e, h') also forms an even good pair for gl<sub>3</sub>. The grading of gl<sub>3</sub> given by ad h' is recored as

$$\left[\begin{array}{rrrr} 0 & 0 & 2 \\ 0 & 0 & 2 \\ -2 & -2 & 0 \end{array}\right]$$

• Fact: even good pair always exists for any given e.

#### • Given an even good pair (e, h).

• Define the following subalgebras

$$\mathfrak{m} = \bigoplus_{j \leq -2} \mathfrak{g}(j) , \qquad \mathfrak{p} = \bigoplus_{j \geq 0} \mathfrak{g}(j)$$

• Define  $\chi \in \mathfrak{g}^*$  by

$$\chi(y) := tr(y \cdot e), \ \forall y \in \mathfrak{g},$$

where  $\cdot$  is the usual matrix multiplication.

- Given an even good pair (e, h).
- Define the following subalgebras

$$\mathfrak{m} = \bigoplus_{j \leq -2} \mathfrak{g}(j) \;, \qquad \mathfrak{p} = \bigoplus_{j \geq 0} \mathfrak{g}(j).$$

• Define  $\chi \in \mathfrak{g}^*$  by

 $\chi(y) := tr(y \cdot e), \ \forall y \in \mathfrak{g},$ 

where  $\cdot$  is the usual matrix multiplication.

- Given an even good pair (e, h).
- Define the following subalgebras

$$\mathfrak{m} = igoplus_{j \leq -2} \mathfrak{g}(j) \;, \qquad \mathfrak{p} = igoplus_{j \geq 0} \mathfrak{g}(j).$$

 $\bullet~ {\sf Define}~ \chi \in \mathfrak{g}^*$  by

$$\chi(y) := tr(y \cdot e), \ \forall y \in \mathfrak{g},$$

where  $\cdot$  is the usual matrix multiplication.

- $I_{\chi} :=$  the left ideal of  $U(\mathfrak{g})$  generated by  $\{a \chi(a) | a \in \mathfrak{m}\}.$
- PBW Theorem  $\Rightarrow U(\mathfrak{g}) = U(\mathfrak{p}) \oplus I_{\chi}$  as vector spaces.
- $\operatorname{pr}_{\chi}: U(\mathfrak{g}) \to U(\mathfrak{p})$  the natural projection.
- $\overline{\mathrm{pr}}_{\chi}: U(\mathfrak{g})/I_{\chi} \to U(\mathfrak{p})$  isomorphism of vector space.
- Note that  $U(\mathfrak{g})/I_{\chi}$  is a quotient algebra since we only quotient over a left ideal.

- $I_{\chi} :=$  the left ideal of  $U(\mathfrak{g})$  generated by  $\{a \chi(a) | a \in \mathfrak{m}\}.$
- PBW Theorem  $\Rightarrow U(\mathfrak{g}) = U(\mathfrak{p}) \oplus I_{\chi}$  as vector spaces.
- $\operatorname{pr}_{\chi}: U(\mathfrak{g}) \to U(\mathfrak{p})$  the natural projection.
- $\overline{\mathrm{pr}}_{\chi}: U(\mathfrak{g})/I_{\chi} \to U(\mathfrak{p})$  isomorphism of vector space.
- Note that  $U(\mathfrak{g})/I_{\chi}$  is a quotient algebra since we only quotient over a left ideal.

- $I_{\chi} :=$  the left ideal of  $U(\mathfrak{g})$  generated by  $\{a \chi(a) | a \in \mathfrak{m}\}.$
- PBW Theorem  $\Rightarrow U(\mathfrak{g}) = U(\mathfrak{p}) \oplus I_{\chi}$  as vector spaces.
- $\operatorname{pr}_{\chi}: U(\mathfrak{g}) \to U(\mathfrak{p})$  the natural projection.
- $\overline{\mathrm{pr}}_{\chi}: U(\mathfrak{g})/I_{\chi} \to U(\mathfrak{p})$  isomorphism of vector space.
- Note that  $U(\mathfrak{g})/I_{\chi}$  is a quotient algebra since we only quotient over a left ideal.

• Define a  $\chi$ -twisted adjoint action of  $\mathfrak{m}$  on  $U(\mathfrak{p})\cong U(\mathfrak{g})/I_{\chi}$  by

 $a \cdot y := \operatorname{pr}_{\chi}([a, y]), \quad a \in \mathfrak{m}, y \in U(\mathfrak{p})$ 

• An element  $y \in U(\mathfrak{p})$  is annihilated by  $a \in \mathfrak{m}$  means the following

 $a \cdot y = 0 \Leftrightarrow [a, y] \in I_{\chi} \Leftrightarrow ay - ya \in I_{\chi} \Leftrightarrow (a - \chi(a))y \in I_{\chi}$  $a = \chi(a) \text{ in } I_{\chi}$ 

 We collect all elements in U(p) that are annihilated by every elements of m, and they do form an algebra by the multiplication in U(p). • Define a  $\chi$ -twisted adjoint action of  $\mathfrak{m}$  on  $U(\mathfrak{p}) \cong U(\mathfrak{g})/I_{\chi}$  by

$$a \cdot y := \operatorname{pr}_{\chi}([a, y]), \quad a \in \mathfrak{m}, y \in U(\mathfrak{p})$$

• An element  $y \in U(\mathfrak{p})$  is annihilated by  $a \in \mathfrak{m}$  means the following

$$a \cdot y = 0 \Leftrightarrow [a, y] \in I_{\chi} \Leftrightarrow ay - ya \in I_{\chi} \Leftrightarrow (a - \chi(a))y \in I_{\chi}$$
  
since  $a = \chi(a)$  in  $I_{\chi}$ .

 We collect all elements in U(p) that are annihilated by every elements of m, and they do form an algebra by the multiplication in U(p). • Define a  $\chi$ -twisted adjoint action of  $\mathfrak{m}$  on  $U(\mathfrak{p})\cong U(\mathfrak{g})/I_{\chi}$  by

$$a \cdot y := \operatorname{pr}_{\chi}([a, y]), \quad a \in \mathfrak{m}, y \in U(\mathfrak{p})$$

• An element  $y \in U(\mathfrak{p})$  is annihilated by  $a \in \mathfrak{m}$  means the following

$$a \cdot y = 0 \Leftrightarrow [a, y] \in I_{\chi} \Leftrightarrow ay - ya \in I_{\chi} \Leftrightarrow (a - \chi(a))y \in I_{\chi}$$
  
since  $a = \chi(a)$  in  $I_{\chi}$ .

• We collect all elements in U(p) that are annihilated by every elements of  $\mathfrak{m}$ , and they do form an algebra by the multiplication in U(p).

#### Definition (Kostant, Lynch)

The *finite W-algebra*  $W_{e,h}$  associated to (e, h) is defined by

$$\mathcal{W}_{e,h} := U(\mathfrak{p})^{\operatorname{ad}\mathfrak{m}} = \{ y \in U(\mathfrak{p}) | (a - \chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m} \}$$

= elements in  $U(\mathfrak{p})$  that fall into  $I_{\chi}$  under the  $\chi$ -twisted action of  $\mathfrak{m}$ 

= the set of Whittaker vectors in  $U(\mathfrak{p})\cong U(\mathfrak{g})/I_{\chi}$ 

# • Trivial example: e = h = 0, then $\mathfrak{p} = \mathfrak{g}$ and $\mathfrak{m} = 0$ . Hence $\mathcal{W}_{e,h} = U(\mathfrak{g})$ .

• Our definition here is a simplified version. In general (the grading is good but not even), the definition is much more complicated. But never mind, up to isomorphism they are all the same to us!

#### Theorem (Gan-Ginzburg'02, IMRN)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the Lagrangian ( (appear for non-even good grading case).

#### (Brundan-Goodwin'07, Proc. LMS)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the good grading (that is, depends only on e).

• From now on a "good pair" always mean an "even good pair".
- Trivial example: e = h = 0, then  $\mathfrak{p} = \mathfrak{g}$  and  $\mathfrak{m} = 0$ . Hence  $\mathcal{W}_{e,h} = U(\mathfrak{g})$ .
- Our definition here is a simplified version. In general (the grading is good but not even), the definition is much more complicated. But never mind, up to isomorphism they are all the same to us!

## Theorem (Gan-Ginzburg'02, IMRN)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the Lagrangian l (appear for non-even good grading case).

## Theorem (Brundan-Goodwin'07, Proc. LMS)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the good grading (that is, depends only on e).

• From now on a "good pair" always mean an "even good pair".

- Trivial example: e = h = 0, then  $\mathfrak{p} = \mathfrak{g}$  and  $\mathfrak{m} = 0$ . Hence  $\mathcal{W}_{e,h} = U(\mathfrak{g})$ .
- Our definition here is a simplified version. In general (the grading is good but not even), the definition is much more complicated. But never mind, up to isomorphism they are all the same to us!

## Theorem (Gan-Ginzburg'02, IMRN)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the Lagrangian l (appear for non-even good grading case).

## Theorem (Brundan-Goodwin'07, Proc. LMS)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the good grading (that is, depends only on e).

• From now on a "good pair" always mean an "even good pair".

- There are other equivalent approaches to define  $\mathcal{W}_{e,h}$ , which means that it is an object in the intersection of different branches of mathematics. As a result, there are different approaches with different emphases to study it:
  - [Boer-Tjin: 93 CMP]
  - [De Sole-Kac: 06 Jpn. J. Math. ]
  - [Losev: 10 J. AMS, 11 Duke., 11 Adv., 15 Inv.]
  - [Premet: 95 Inv., 02 Adv., 07 J. EMS., 07 Mosc. Math. J., 10 Adv.]
- We roughly explain another definition here. The restriction of χ ∈ g\* to m gives a 1-dim repn of m and hence of U(m), denoted by C<sub>χ</sub>.
- Consider the following induced representation of  $U(\mathfrak{g})$  called the generalized Gelfand-Graev representation

$$\mathbb{Q}_{\chi} := U(\mathfrak{g}) \otimes_{U(\mathfrak{m})} \mathbb{C}_{\chi} \cong U(\mathfrak{g})/I_{\chi}$$

- There are other equivalent approaches to define  $\mathcal{W}_{e,h}$ , which means that it is an object in the intersection of different branches of mathematics. As a result, there are different approaches with different emphases to study it:
  - [Boer-Tjin: 93 CMP]
  - [De Sole-Kac: 06 Jpn. J. Math. ]
  - [Losev: 10 J. AMS, 11 Duke., 11 Adv., 15 Inv.]
  - [Premet: 95 Inv., 02 Adv., 07 J. EMS., 07 Mosc. Math. J., 10 Adv.]
- We roughly explain another definition here. The restriction of χ ∈ g\* to m gives a 1-dim repn of m and hence of U(m), denoted by C<sub>χ</sub>.
- Consider the following induced representation of  $U(\mathfrak{g})$  called the generalized Gelfand-Graev representation

$$\mathbb{Q}_{\chi} := U(\mathfrak{g}) \otimes_{U(\mathfrak{m})} \mathbb{C}_{\chi} \cong U(\mathfrak{g})/I_{\chi}$$

- There are other equivalent approaches to define  $\mathcal{W}_{e,h}$ , which means that it is an object in the intersection of different branches of mathematics. As a result, there are different approaches with different emphases to study it:
  - [Boer-Tjin: 93 CMP]
  - [De Sole-Kac: 06 Jpn. J. Math. ]
  - [Losev: 10 J. AMS, 11 Duke., 11 Adv., 15 Inv.]
  - [Premet: 95 Inv., 02 Adv., 07 J. EMS., 07 Mosc. Math. J., 10 Adv.]
- We roughly explain another definition here. The restriction of χ ∈ g\* to m gives a 1-dim repn of m and hence of U(m), denoted by C<sub>χ</sub>.
- Consider the following induced representation of  $U(\mathfrak{g})$  called the generalized Gelfand-Graev representation

$$\mathbb{Q}_{\chi} := U(\mathfrak{g}) \otimes_{U(\mathfrak{m})} \mathbb{C}_{\chi} \cong U(\mathfrak{g})/I_{\chi}$$

# • Take any $u \in \mathcal{W}_{e,h} = \{y \in U(\mathfrak{p}) | [a, y] = (a - \chi(a))y \in I_{\chi} \ \forall a \in \mathfrak{m} \}$

- Note that  $I_{\chi}$  is invariant under right multiplication by u, which makes  $\mathbb{Q}_{\chi} \cong U(\mathfrak{g})/I_{\chi}$  into a  $(U(\mathfrak{g}), \mathcal{W}_{e,h})$ -bimodule.
- One can show that the associated algebra homomorphism

$$\mathcal{W}_{e,h} \to \operatorname{End}_{U(\mathfrak{g})} \mathbb{Q}_{\chi}^{op} \qquad u \mapsto r_u$$

is actually an isomorphism. This gives an alternative definition of W-algebra as an endomorphism algebra.

$$\mathcal{W}_{\chi} := \mathsf{End}_{U(\mathfrak{g})} \mathsf{Q}_{\chi} {}^{op}$$

- Take any  $u \in W_{e,h} = \{y \in U(\mathfrak{p}) | [a, y] = (a \chi(a))y \in I_{\chi} \ \forall a \in \mathfrak{m}\}$
- Note that  $I_{\chi}$  is invariant under right multiplication by u, which makes  $\mathbb{Q}_{\chi} \cong U(\mathfrak{g})/I_{\chi}$  into a  $(U(\mathfrak{g}), \mathcal{W}_{e,h})$ -bimodule.
- One can show that the associated algebra homomorphism

$$\mathcal{W}_{e,h} \to \operatorname{End}_{U(\mathfrak{g})} \mathbb{Q}_{\chi}^{op} \qquad u \mapsto r_u$$

is actually an isomorphism. This gives an alternative definition of *W*-algebra as an endomorphism algebra.

$$\mathcal{W}_{\chi} := \mathsf{End}_{U(\mathfrak{g})} \mathsf{Q}_{\chi} {}^{op}$$

- Take any  $u \in W_{e,h} = \{y \in U(\mathfrak{p}) \mid [a, y] = (a \chi(a))y \in I_{\chi} \ \forall a \in \mathfrak{m}\}$
- Note that  $I_{\chi}$  is invariant under right multiplication by u, which makes  $\mathbb{Q}_{\chi} \cong U(\mathfrak{g})/I_{\chi}$  into a  $(U(\mathfrak{g}), \mathcal{W}_{e,h})$ -bimodule.
- One can show that the associated algebra homomorphism

$$W_{e,h} \to \operatorname{End}_{U(\mathfrak{g})} \mathbb{Q}_{\chi}^{op} \qquad u \mapsto r_u$$

is actually an isomorphism. This gives an alternative definition of W-algebra as an endomorphism algebra.

$$\mathcal{W}_{\chi} := \operatorname{End}_{U(\mathfrak{g})} \mathbb{Q}_{\chi} {}^{op}$$

- Take any  $u \in W_{e,h} = \{y \in U(\mathfrak{p}) \mid [a, y] = (a \chi(a))y \in I_{\chi} \ \forall a \in \mathfrak{m}\}$
- Note that  $I_{\chi}$  is invariant under right multiplication by u, which makes  $\mathbb{Q}_{\chi} \cong U(\mathfrak{g})/I_{\chi}$  into a  $(U(\mathfrak{g}), \mathcal{W}_{e,h})$ -bimodule.
- One can show that the associated algebra homomorphism

$$\mathcal{W}_{e,h} \to \operatorname{End}_{U(\mathfrak{g})} \mathbb{Q}_{\chi}^{op} \qquad u \mapsto r_u$$

is actually an isomorphism. This gives an alternative definition of W-algebra as an endomorphism algebra.

$$\mathcal{W}_{\chi} := \operatorname{End}_{U(\mathfrak{g})} \operatorname{Q}_{\chi} {}^{op}$$

Take  $\mathfrak{sl}_2 = \{e = e_{12}, h = e_{11} - e_{22}, f = e_{21}\}$  in  $\mathfrak{gl}_2$  and (e, h) is a (Dynkin) good pair. The grading is recorded as  $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ . Then

• 
$$\mathfrak{m} = \bigoplus_{j < 0} \mathfrak{g}(j) = \mathbb{C}f = \mathbb{C}e_{21}$$
,

• 
$$\mathfrak{p} = \bigoplus_{j \ge 0} \mathfrak{g}(j) = \mathbb{C}e + \mathbb{C}e_{11} + \mathbb{C}e_{22},$$

• 
$$I_{\chi} = U(\mathfrak{g})(f - \chi(f)) = U(\mathfrak{g})(f - \operatorname{tr}(fe)) = U(\mathfrak{g})(f - 1).$$

• 
$$s = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in U(\mathfrak{p})$$
. Since  $[f, s] = 0 \in I_{\chi}$ , we have  $s \in \mathcal{W}_{e,h}$ .

• The element  $t := e + \frac{1}{4}h^2 - \frac{1}{2}h \in \mathcal{W}_{e,h}$  since  $[f, t] = h(f - 1) \in I_{\chi}$ 

Take 
$$\mathfrak{sl}_2 = \{e = e_{12}, h = e_{11} - e_{22}, f = e_{21}\}$$
 in  $\mathfrak{gl}_2$  and  $(e, h)$  is a (Dynkin)  
good pair. The grading is recorded as  $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ . Then  
 $\mathbf{m} = \bigoplus_{j < 0} \mathfrak{g}(j) = \mathbb{C}f = \mathbb{C}e_{21},$   
 $\mathbf{p} = \bigoplus_{j \ge 0} \mathfrak{g}(j) = \mathbb{C}e + \mathbb{C}e_{11} + \mathbb{C}e_{22},$   
 $\mathbf{l}_{\chi} = U(\mathfrak{g})(f - \chi(f)) = U(\mathfrak{g})(f - \operatorname{tr}(fe)) = U(\mathfrak{g})(f - 1).$   
 $\mathbf{s} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in U(\mathfrak{p}).$  Since  $[f, s] = 0 \in I_{\chi}$ , we have  $s \in W_{e,h}$ .  
 $\mathbf{s}$  The element  $t := e + \frac{1}{2}h^2 - \frac{1}{2}h \in W_{e,h}$  since  $[f, t] = h(f - 1) \in I_{\chi}$ .

Take 
$$\mathfrak{sl}_2 = \{e = e_{12}, h = e_{11} - e_{22}, f = e_{21}\}$$
 in  $\mathfrak{gl}_2$  and  $(e, h)$  is a (Dynkin)  
good pair. The grading is recorded as  $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ . Then  
 $\mathbf{m} = \bigoplus_{j < 0} \mathfrak{g}(j) = \mathbb{C}f = \mathbb{C}e_{21},$   
 $\mathbf{p} = \bigoplus_{j \ge 0} \mathfrak{g}(j) = \mathbb{C}e + \mathbb{C}e_{11} + \mathbb{C}e_{22},$   
 $\mathbf{l}_{\chi} = U(\mathfrak{g})(f - \chi(f)) = U(\mathfrak{g})(f - \operatorname{tr}(fe)) = U(\mathfrak{g})(f - 1).$   
 $\mathbf{s} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in U(\mathfrak{p}).$  Since  $[f, s] = 0 \in I_{\chi}$ , we have  $s \in W_{e,h}$ .

Take 
$$\mathfrak{sl}_2 = \{e = e_{12}, h = e_{11} - e_{22}, f = e_{21}\}$$
 in  $\mathfrak{gl}_2$  and  $(e, h)$  is a (Dynkin)  
good pair. The grading is recorded as  $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ . Then  
 $\mathfrak{m} = \bigoplus_{j < 0} \mathfrak{g}(j) = \mathbb{C}f = \mathbb{C}e_{21},$   
 $\mathfrak{p} = \bigoplus_{j \ge 0} \mathfrak{g}(j) = \mathbb{C}e + \mathbb{C}e_{11} + \mathbb{C}e_{22},$   
 $\mathfrak{l}_{\chi} = U(\mathfrak{g})(f - \chi(f)) = U(\mathfrak{g})(f - \operatorname{tr}(fe)) = U(\mathfrak{g})(f - 1).$   
 $\mathfrak{s} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in U(\mathfrak{p}).$  Since  $[f, s] = 0 \in I_{\chi}$ , we have  $s \in W_{e,h}$ .  
 $\mathfrak{m}$  The element  $t := e + \frac{1}{4}h^2 - \frac{1}{2}h \in W_{e,h}$  since  $[f, t] = h(f - 1) \in I_{\chi}$ 

Yung-Ning Peng (NCU)

In fact, this special example reveals some important facts.

- s clearly commutes with anything in  $U(\mathfrak{g})$ .
- Recall  $c = ef + fe + \frac{1}{2}h^2 = 2ef + \frac{1}{2}h^2 h$ , the Casimir element in U(g), which is well-known to be central.
- This c is related to the element  $t \in W_{e,h}$ :

$$\operatorname{pr}_{\chi}(\frac{c}{2}) = \operatorname{pr}_{\chi}(e(f-1) + e + \frac{1}{4}h^2 - \frac{1}{2}h) = t$$

• In this special case,  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ , the center of  $U(\mathfrak{g})$ .

In fact, this special example reveals some important facts.

• s clearly commutes with anything in  $U(\mathfrak{g})$ .

- Recall  $c = ef + fe + \frac{1}{2}h^2 = 2ef + \frac{1}{2}h^2 h$ , the Casimir element in U(g), which is well-known to be central.
- This c is related to the element  $t \in W_{e,h}$ :

$$\operatorname{pr}_{\chi}(\frac{c}{2}) = \operatorname{pr}_{\chi}(e(f-1) + e + \frac{1}{4}h^2 - \frac{1}{2}h) = t$$

• In this special case,  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ , the center of  $U(\mathfrak{g})$ .

In fact, this special example reveals some important facts.

- s clearly commutes with anything in  $U(\mathfrak{g})$ .
- Recall  $c = ef + fe + \frac{1}{2}h^2 = 2ef + \frac{1}{2}h^2 h$ , the Casimir element in  $U(\mathfrak{g})$ , which is well-known to be central.
- This c is related to the element  $t \in W_{e,h}$ :

$$\operatorname{pr}_{\chi}(\frac{c}{2}) = \operatorname{pr}_{\chi}(e(f-1) + e + \frac{1}{4}h^2 - \frac{1}{2}h) = t$$

• In this special case,  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ , the center of  $U(\mathfrak{g})$ .

In fact, this special example reveals some important facts.

- s clearly commutes with anything in  $U(\mathfrak{g})$ .
- Recall  $c = ef + fe + \frac{1}{2}h^2 = 2ef + \frac{1}{2}h^2 h$ , the Casimir element in  $U(\mathfrak{g})$ , which is well-known to be central.
- This c is related to the element  $t \in \mathcal{W}_{e,h}$ :

$$\operatorname{pr}_{\chi}(\frac{c}{2}) = \operatorname{pr}_{\chi}(e(f-1) + e + \frac{1}{4}h^2 - \frac{1}{2}h) = t$$

• In this special case,  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ , the center of  $U(\mathfrak{g})$ .

In fact, this special example reveals some important facts.

- s clearly commutes with anything in  $U(\mathfrak{g})$ .
- Recall  $c = ef + fe + \frac{1}{2}h^2 = 2ef + \frac{1}{2}h^2 h$ , the Casimir element in  $U(\mathfrak{g})$ , which is well-known to be central.
- This c is related to the element  $t \in W_{e,h}$ :

$$\mathsf{pr}_{\chi}(\frac{c}{2}) = \mathsf{pr}_{\chi}(e(f-1) + e + \frac{1}{4}h^2 - \frac{1}{2}h) = t$$

• In this special case,  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ , the center of  $U(\mathfrak{g})$ .

In fact, this special example reveals some important facts.

- s clearly commutes with anything in  $U(\mathfrak{g})$ .
- Recall  $c = ef + fe + \frac{1}{2}h^2 = 2ef + \frac{1}{2}h^2 h$ , the Casimir element in  $U(\mathfrak{g})$ , which is well-known to be central.
- This c is related to the element  $t \in W_{e,h}$ :

$$\mathsf{pr}_{\chi}(\frac{c}{2}) = \mathsf{pr}_{\chi}(e(f-1) + e + \frac{1}{4}h^2 - \frac{1}{2}h) = t$$

• In this special case,  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ , the center of  $U(\mathfrak{g})$ .

#### Theorem (Kostant'78, Invent. Math.)

 $\mathfrak{g} = \mathfrak{gl}_M$ , (e, h) a good pair with e principal (also called regular) nilpotent. Then  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ .

- Principal means that there is only one Jordan block in e.
- The example we saw is principal  $(e = e_{12} \in \mathfrak{gl}_2)$

## Theorem (Kostant'78, Invent. Math.)

 $\mathfrak{g} = \mathfrak{gl}_M$ , (e, h) a good pair with e principal (also called regular) nilpotent. Then  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ .

- *Principal* means that there is only one Jordan block in *e*.
- The example we saw is principal  $(e = e_{12} \in \mathfrak{gl}_2)$

## Theorem (Kostant'78, Invent. Math.)

 $\mathfrak{g} = \mathfrak{gl}_M$ , (e, h) a good pair with e principal (also called regular) nilpotent. Then  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ .

• Principal means that there is only one Jordan block in e.

• The example we saw is principal  $(e = e_{12} \in \mathfrak{gl}_2)$ 

## Theorem (Kostant'78, Invent. Math.)

 $\mathfrak{g} = \mathfrak{gl}_M$ , (e, h) a good pair with e principal (also called regular) nilpotent. Then  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ .

- Principal means that there is only one Jordan block in e.
- The example we saw is principal  $(e = e_{12} \in \mathfrak{gl}_2)$

# The largest and the smallest one

• Recall  $e=0 \xleftarrow{Jordan type}{e=(1^M)}$  (one column Young diagram)

We have seen in this case the W-algebra is the largest one:  $\mathcal{W}_{e,h} = U(\mathfrak{g}).$ 

• The other extreme case  $e: principal \xleftarrow{Jordan type} e = (M) \text{ (one row Young diagram)}$ 

Kostant's Theorem shows that  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ .

• One can say in this case the W-algebra is the smallest one:

#### Theorem (Brundan-Kleshchev'08, Mem. AMS)

The center of any W-algebra (associated to some nilpotent element in  $\mathfrak{gl}_M$ ) is isomorphic to  $Z(\mathfrak{gl}_M)$ .

# The largest and the smallest one

• Recall  $e=0 \xleftarrow{Jordan type}{e=(1^M)}$  (one column Young diagram)

We have seen in this case the *W*-algebra is the largest one:  $W_{e,h} = U(\mathfrak{g}).$ 

• The other extreme case  $e: principal \xleftarrow{Jordan type} e = (M) (one row Young diagram)$ 

Kostant's Theorem shows that  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ .

• One can say in this case the W-algebra is the smallest one:

Theorem (Brundan-Kleshchev'08, Mem. AMS)

The center of any W-algebra (associated to some nilpotent element in  $\mathfrak{gl}_M$ ) is isomorphic to  $Z(\mathfrak{gl}_M)$ .

# The largest and the smallest one

• Recall  $e=0 \xleftarrow{Jordan type}{e=(1^M)}$  (one column Young diagram)

We have seen in this case the *W*-algebra is the largest one:  $\mathcal{W}_{e,h} = U(\mathfrak{g}).$ 

• The other extreme case

 $e: principal \xleftarrow{Jordan type} e = (M)$  (one row Young diagram)

Kostant's Theorem shows that  $\mathcal{W}_{e,h} \cong Z(\mathfrak{g})$ .

• One can say in this case the W-algebra is the smallest one:

#### Theorem (Brundan-Kleshchev'08, Mem. AMS)

The center of any W-algebra (associated to some nilpotent element in  $\mathfrak{gl}_M$ ) is isomorphic to  $Z(\mathfrak{gl}_M)$ .

# Pyramid

- Observing the definition, one sees that *W*-algebra is determined by the good pair (*e*, *h*).
- Pyramid: a convenient diagram simultaneously recording *e* and *h*.
- Let  $\lambda$  be a partition of M = a Young diagram with M boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram  $\lambda$  such that no bricks hanging in the air.
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair (e, h) in gl<sub>M</sub> from a given pyramid π consisting of M boxes by an example.

# Pyramid

- Observing the definition, one sees that *W*-algebra is determined by the good pair (*e*, *h*).
- Pyramid: a convenient diagram simultaneously recording *e* and *h*.
- Let  $\lambda$  be a partition of M = a Young diagram with M boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram  $\lambda$  such that no bricks hanging in the air.
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair (e, h) in gl<sub>M</sub> from a given pyramid π consisting of M boxes by an example.

- Observing the definition, one sees that *W*-algebra is determined by the good pair (*e*, *h*).
- Pyramid: a convenient diagram simultaneously recording *e* and *h*.
- Let  $\lambda$  be a partition of M = a Young diagram with M boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram  $\lambda$  such that no bricks hanging in the air.
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair (e, h) in gl<sub>M</sub> from a given pyramid π consisting of M boxes by an example.

- Observing the definition, one sees that *W*-algebra is determined by the good pair (*e*, *h*).
- Pyramid: a convenient diagram simultaneously recording *e* and *h*.
- Let  $\lambda$  be a partition of M = a Young diagram with M boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram  $\lambda$  such that no bricks hanging in the air.
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair (e, h) in  $\mathfrak{gl}_M$  from a given pyramid  $\pi$  consisting of M boxes by an example.

# Example of Pyramid





# From $\pi$ to a good pair



• 
$$e(\pi) = e_{3,5} + e_{1,4} + e_{4,6} \in \mathfrak{gl}_6.$$

• 
$$h(\pi) = -\text{diag}(-2, 0, 0, 0, 2, 2) \in \mathfrak{gl}_6.$$

• Easily checked :  $(e(\pi), h(\pi))$  forms a good pair of  $\mathfrak{gl}_6$ .

# • $e \longrightarrow \pi \longrightarrow (e(\pi), h(\pi))$ . (existence of good pair for any e)

• In fact, the set of pyramids *classifies* all good pairs, due to the following theorem:

#### Theorem (Elashvili-Kac'05)

Every good pair must come from a pyramid. That is, for any good pair (e, h), there exists some pyramid  $\pi$  such that  $e = e(\pi)$  and  $h = h(\pi)$ . Note: this results holds for non-even good pair as well

• Given 
$$\pi \longrightarrow \mathcal{W}_{\pi} := \mathcal{W}_{e(\pi),h(\pi)}$$
.

•  $e \longrightarrow \pi \longrightarrow (e(\pi), h(\pi))$ . (existence of good pair for any e)

• In fact, the set of pyramids *classifies* all good pairs, due to the following theorem:

## Theorem (Elashvili-Kac'05)

Every good pair must come from a pyramid. That is, for any good pair (e, h), there exists some pyramid  $\pi$  such that  $e = e(\pi)$  and  $h = h(\pi)$ . Note: this results holds for non-even good pair as well

• Given 
$$\pi \longrightarrow \mathcal{W}_{\pi} := \mathcal{W}_{e(\pi),h(\pi)}$$
.

•  $e \longrightarrow \pi \longrightarrow (e(\pi), h(\pi))$ . (existence of good pair for any e)

• In fact, the set of pyramids *classifies* all good pairs, due to the following theorem:

## Theorem (Elashvili-Kac'05)

Every good pair must come from a pyramid. That is, for any good pair (e, h), there exists some pyramid  $\pi$  such that  $e = e(\pi)$  and  $h = h(\pi)$ . Note: this results holds for non-even good pair as well

• Given 
$$\pi \longrightarrow \mathcal{W}_{\pi} := \mathcal{W}_{e(\pi),h(\pi)}$$
.

# Pyramid and shift matrix

• Equivalently, one can express a pyramid  $\pi$  by a shift matrix

$$\sigma = (s_{i,j})_{1 \le i,j \le m}$$

*m*=height of  $\pi$ ,  $s_{ij} \in \mathbb{Z}_{\geq}0$  satisfy the following condition

$$s_{i,j} + s_{j,k} = s_{i,k},$$
 (1.1)

whenever |i - j| + |j - k| = |i - k|, together with a natural number  $\ell > s_{m,1} + s_{1,m}$ 

- The condition (1.1) implies that the whole matrix σ can be recovered if a row and a column is known.
- The process can be easily reverted, obtaining a unique π from a given pair l and σ.
## Pyramid and shift matrix

• Equivalently, one can express a pyramid  $\pi$  by a shift matrix

$$\sigma = (\mathbf{s}_{i,j})_{1 \le i,j \le m}$$

*m*=height of  $\pi$ ,  $s_{ij} \in \mathbb{Z}_{\geq}0$  satisfy the following condition

$$s_{i,j} + s_{j,k} = s_{i,k},$$
 (1.1)

whenever |i - j| + |j - k| = |i - k|, together with a natural number  $\ell > s_{m,1} + s_{1,m}$ 

- The condition (1.1) implies that the whole matrix σ can be recovered if a row and a column is known.
- The process can be easily reverted, obtaining a unique  $\pi$  from a given pair  $\ell$  and  $\sigma$ .

# Pyramid and shift matrix

• Equivalently, one can express a pyramid  $\pi$  by a shift matrix

$$\sigma = (\mathbf{s}_{i,j})_{1 \le i,j \le m}$$

m=height of  $\pi$ ,  $s_{ij} \in \mathbb{Z}_{\geq} 0$  satisfy the following condition

$$s_{i,j} + s_{j,k} = s_{i,k},$$
 (1.1)

whenever |i - j| + |j - k| = |i - k|, together with a natural number  $\ell > s_{m,1} + s_{1,m}$ 

- The condition (1.1) implies that the whole matrix σ can be recovered if a row and a column is known.
- The process can be easily reverted, obtaining a unique  $\pi$  from a given pair  $\ell$  and  $\sigma$ .

#### Example



### • $\ell = 4$ , $\sigma$ is $3 \times 3 \longrightarrow A$ rectangle $\Pi$ of base 4 height 3.

- Last row of  $\sigma \longrightarrow Boxes$  to be removed in the left hand side of  $\Pi$ .
- Last column of  $\sigma \longrightarrow$  Boxes to be removed in the right hand side of  $\Pi$ .
- Easy to construct the inverse map so we have a bijection.

#### Example



- $\ell = 4$ ,  $\sigma$  is  $3 \times 3 \longrightarrow A$  rectangle  $\Pi$  of base 4 height 3.
- Last row of  $\sigma \longrightarrow \text{Boxes}$  to be removed in the left hand side of  $\Pi$ .
- Last column of  $\sigma \longrightarrow Boxes$  to be removed in the right hand side of  $\Pi$ .

• Easy to construct the inverse map so we have a bijection.

#### Example



- $\ell = 4$ ,  $\sigma$  is  $3 \times 3 \longrightarrow A$  rectangle  $\Pi$  of base 4 height 3.
- Last row of  $\sigma \longrightarrow \text{Boxes}$  to be removed in the left hand side of  $\Pi$ .
- Last column of  $\sigma \longrightarrow Boxes$  to be removed in the right hand side of  $\Pi$ .
- Easy to construct the inverse map so we have a bijection.

Width of  $\pi \longleftrightarrow \ell$ Height of  $\pi \longleftrightarrow$  Size of  $\sigma$ Shape of  $\pi \longleftrightarrow$  Entries of  $\sigma$ 

Good pair  $(e, h) \xleftarrow{1:1}$  Pyramid  $\pi \xleftarrow{1:1}$  A matrix and integer  $(\sigma, \ell)$ 

## Finite W-algebra of gl<sub>M</sub>

## (2) Yangian associated to $\mathfrak{gl}_m$

3 Presentation of W-algebra in terms of Yangian

4 Super version of the story

29 / 70

The Yangian associated to  $\mathfrak{gl}_m$ , denoted by  $Y_m$ , can be defined by several different but equivalent presentations. The first one we mention is

## Definition (RTT presentation)

 $Y_m$ : an associative algebra with generators

$$\left\{t_{ij}^{(r)} \mid 1 \le i, j \le m; r \ge 0\right\},\$$

defining relations

$$t_{ij}^{(0)} := \delta_{ij},$$

$$[t_{ij}^{(r)}, t_{hk}^{(s)}] = \sum_{g=0}^{\min(r,s)-1} \left( t_{hj}^{(g)} t_{ik}^{(r+s-1-g)} - t_{hj}^{(r+s-1-g)} t_{ik}^{(g)} \right),$$

where the bracket stands for the commutator.

# Parabolic presentation for $Y_m$

For our purpose, we need a different presentation for  $Y_m$  due to Brundan-Kleshchev.

### Theorem (BK'05, CMP)

Let  $\mu = (\mu_1, \mu_2, \dots, \mu_z)$  be a composition of m.  $Y_m$  is isomorphic to the algebra generated by the following symbols

$$\{ D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z, \ 1 \le i,j \le \mu_a, \ r \in \mathbb{Z}_{\ge 0} \}, \\ \{ E_{b;h,k}^{(s)} | 1 \le b < z, \ 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}, \ s \in \mathbb{Z}_{\ge 1} \}, \\ \{ F_{b;k,h}^{(s)} | 1 \le b < z, \ 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}, \ s \in \mathbb{Z}_{\ge 1} \}.$$

subjected to certain relations.

 These symbols are called the parabolic generators of Y<sub>m</sub>, depending on μ by definition.

Yung-Ning Peng (NCU) From nilpotent element to finite W-algebra

# Parabolic presentation for $Y_m$

For our purpose, we need a different presentation for  $Y_m$  due to Brundan-Kleshchev.

## Theorem (BK'05, CMP)

Let  $\mu = (\mu_1, \mu_2, \dots, \mu_z)$  be a composition of m.  $Y_m$  is isomorphic to the algebra generated by the following symbols

$$\{ D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z, \ 1 \le i,j \le \mu_a, \ r \in \mathbb{Z}_{\ge 0} \}, \\ \{ E_{b;h,k}^{(s)} | 1 \le b < z, \ 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}, \ s \in \mathbb{Z}_{\ge 1} \}, \\ \{ F_{b;k,h}^{(s)} | 1 \le b < z, \ 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}, \ s \in \mathbb{Z}_{\ge 1} \}.$$

subjected to certain relations.

 These symbols are called the parabolic generators of Y<sub>m</sub>, depending on μ by definition.

 Yung-Ning Peng (NCU)
 From nilpotent element to finite W-algebra
  $\diamond$  Nov 29, 2021  $\diamond$ 

31 / 70

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take  $\mu = (m)$ , we recover the RTT presentation.
- Take  $\mu = (1^m)$ , we recover an analogue of Drinfeld's presentation for  $Y(\mathfrak{sl}_m)$ .
- It is also proved in BK'05 that  $Y_m$  is independent of the choice of  $\mu$  up to isomorphism. We write  $Y_{\mu} := Y_m$  to emphasize  $\mu$  when necessary.

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take  $\mu = (m)$ , we recover the RTT presentation.
- Take  $\mu = (1^m)$ , we recover an analogue of Drinfeld's presentation for  $Y(\mathfrak{sl}_m)$ .
- It is also proved in BK'05 that  $Y_m$  is independent of the choice of  $\mu$  up to isomorphism. We write  $Y_{\mu} := Y_m$  to emphasize  $\mu$  when necessary.

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take  $\mu = (m)$ , we recover the RTT presentation.
- Take  $\mu = (1^m)$ , we recover an analogue of Drinfeld's presentation for  $Y(\mathfrak{sl}_m)$ .
- It is also proved in BK'05 that  $Y_m$  is independent of the choice of  $\mu$  up to isomorphism. We write  $Y_{\mu} := Y_m$  to emphasize  $\mu$  when necessary.

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take  $\mu = (m)$ , we recover the RTT presentation.
- Take  $\mu = (1^m)$ , we recover an analogue of Drinfeld's presentation for  $Y(\mathfrak{sl}_m)$ .
- It is also proved in BK'05 that  $Y_m$  is independent of the choice of  $\mu$  up to isomorphism. We write  $Y_{\mu} := Y_m$  to emphasize  $\mu$  when necessary.

## **1** Finite *W*-algebra of $\mathfrak{gl}_M$

- 2 Yangian associated to  $\mathfrak{gl}_m$
- 3 Presentation of W-algebra in terms of Yangian
- 4 Super version of the story

33 / 70

- The connection between *W*-algebra and Yangian was firstly observed in [Ragoucy-Sorba'99, CMP] for special cases (rectangular pyramid). The general case (arbitrary *e*) is constructed by [BK'06].
- To explain the result in [BK'06], we need to define the shifted Yangian, which is a subalgebra of  $Y_m$ .

- The connection between *W*-algebra and Yangian was firstly observed in [Ragoucy-Sorba'99, CMP] for special cases (rectangular pyramid). The general case (arbitrary *e*) is constructed by [BK'06].
- To explain the result in [BK'06], we need to define the shifted Yangian, which is a subalgebra of  $Y_m$ .

• 
$$(e, h) \longleftrightarrow \pi \longleftrightarrow (\sigma, \ell).$$

• Say  $\sigma = (s_{i,j})$  is of size m.

• Take a composition  $\mu = (\mu_1, \dots, \mu_z)$  admissible to  $\sigma$ , which means that

$$s_{\mu_1+\mu_2+\dots+\mu_{a-1}+i,\mu_1+\mu_2+\dots+\mu_{a-1}+j} = 0$$

for all  $1 \leq a \leq z$ ,  $1 \leq i, j \leq \mu_a$ 

• "admissible" means that square matrices of size  $\mu_1, \mu_2, \ldots$  in the diagonal blocks of  $\sigma$  are all zero matrices.

• 
$$(e, h) \longleftrightarrow \pi \longleftrightarrow (\sigma, \ell).$$

- Say  $\sigma = (s_{i,j})$  is of size m.
- Take a composition  $\mu = (\mu_1, \dots, \mu_z)$  admissible to  $\sigma$ , which means that

$$s_{\mu_1+\mu_2+\dots+\mu_{a-1}+i,\mu_1+\mu_2+\dots+\mu_{a-1}+j} = 0$$

for all  $1 \leq a \leq z$ ,  $1 \leq i, j \leq \mu_a$ 

• "admissible" means that square matrices of size  $\mu_1, \mu_2, \ldots$  in the diagonal blocks of  $\sigma$  are all zero matrices.

• 
$$(e, h) \longleftrightarrow \pi \longleftrightarrow (\sigma, \ell).$$

- Say  $\sigma = (s_{i,j})$  is of size m.
- Take a composition  $\mu = (\mu_1, \dots, \mu_z)$  admissible to  $\sigma$ , which means that

$$s_{\mu_1+\mu_2+\dots+\mu_{a-1}+i,\mu_1+\mu_2+\dots+\mu_{a-1}+j}=0$$

for all  $1 \le a \le z$ ,  $1 \le i, j \le \mu_a$ 

 "admissible" means that square matrices of size μ<sub>1</sub>, μ<sub>2</sub>,... in the diagonal blocks of σ are all zero matrices.

• 
$$(e, h) \longleftrightarrow \pi \longleftrightarrow (\sigma, \ell).$$

- Say  $\sigma = (s_{i,j})$  is of size m.
- Take a composition  $\mu = (\mu_1, \dots, \mu_z)$  admissible to  $\sigma$ , which means that

$$s_{\mu_1+\mu_2+\dots+\mu_{a-1}+i,\mu_1+\mu_2+\dots+\mu_{a-1}+j}=0$$

for all  $1 \le a \le z$ ,  $1 \le i, j \le \mu_a$ 

• "admissible" means that square matrices of size  $\mu_1, \mu_2, \ldots$  in the diagonal blocks of  $\sigma$  are all zero matrices.

For example, the following matrix is a shift matrix:

$$\sigma = \begin{pmatrix} 0 & 1 & 2 & 2 & 3 & 3 \\ 0 & 0 & 1 & 1 & 2 & 2 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 4 & 4 & 3 & 3 & 0 & 0 \\ 4 & 4 & 3 & 3 & 0 & 0 \end{pmatrix}$$

and  $\mu = (1, 1, 2, 2)$  is minimal (the unique one with shortest length) admissible to  $\sigma$ . (1,1,2,1,1), (1,1,1,1,1) are also admissible.

- According to  $\sigma$  and admissible  $\mu$ , we pick a subset of the parabolic generators we saw in the parabolic presentation of  $Y_{\mu}$ .
- Let  $\mathcal{P}_{\mu,\sigma}$  be the union of following subsets in  $Y_{\mu}$ :

 $\{ D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z; 1 \le i, j \le \mu_a; r \ge 0 \}$   $\{ E_{b;h,k}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b,b+1}^{\mu} \}$  $\{ F_{b;k,h}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b+1,b}^{\mu} \},$ 

where  $s_{a,b}^{\mu}$  means the entry in the (a, b)-th block of  $\sigma$ . (admissible condition  $\Rightarrow$  all entries in the (a, b)-th block) are the same.

- According to  $\sigma$  and admissible  $\mu$ , we pick a subset of the parabolic generators we saw in the parabolic presentation of  $Y_{\mu}$ .
- Let  $\mathcal{P}_{\mu,\sigma}$  be the union of following subsets in  $Y_{\mu}$ :

$$\{ D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z; 1 \le i, j \le \mu_a; r \ge 0 \} \{ E_{b;h,k}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b,b+1}^{\mu} \} \{ F_{b;k,h}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b+1,b}^{\mu} \},$$

where  $s_{a,b}^{\mu}$  means the entry in the (a, b)-th block of  $\sigma$ . (admissible condition  $\Rightarrow$  all entries in the (a, b)-th block) are the same. For example, take  $\mu = (1,1,2)$  which is admissible to

$$\sigma = \left(\begin{array}{rrrrr} 0 & 1 & 3 & 3 \\ 0 & 0 & 2 & 2 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}\right)$$

Then  $\mathcal{P}_{\mu,\sigma}$  is the union

$$\begin{aligned} \{D_1^{(r)}, D_2^{(r)}, D_{3;i,j}^{(r)} \,|\, 1 \leq i, j \leq 2, \ r \geq 0\} & \text{(also those with } \textit{\prime's}), \\ \{E_1^{(s)} \,|\, s \geq 2\}, \quad \{E_{2;1,1}^{(s)}, E_{2;1,2}^{(s)} \,|\, s \geq 3\}, \\ \{F_1^{(s)} \,|\, s \geq 1\}, \qquad \{F_{2;1,1}^{(s)}, F_{2;2,1}^{(s)} \,|\, s \geq 2\}. \end{aligned}$$

- Define the shifted Yangian  $Y_{\mu}(\sigma)$  to be the subalgebra of  $Y_{\mu}$  generated by  $\mathcal{P}_{\mu,\sigma}$ .
- Not only the subalgebra, a presentation of  $Y_{\mu}(\sigma)$  in terms of  $\mathcal{P}_{\mu,\sigma}$  is also required to establish the connection to *W*-algebra, and it is also obtained in [BK'06].

- Define the shifted Yangian  $Y_{\mu}(\sigma)$  to be the subalgebra of  $Y_{\mu}$  generated by  $\mathcal{P}_{\mu,\sigma}$ .
- Not only the subalgebra, a presentation of  $Y_{\mu}(\sigma)$  in terms of  $\mathcal{P}_{\mu,\sigma}$  is also required to establish the connection to *W*-algebra, and it is also obtained in [BK'06].

### Theorem (BK'06, Adv. Math.)

- The shifted Yangian  $Y_{\mu}(\sigma)$  is the abstract algebra generated by symbols in  $\mathcal{P}_{\mu,\sigma}$  subjected to following relations.
- **2** One can identify  $Y_{\mu}(\sigma)$  as a subalgebra of  $Y_{\mu}$  by identifying the symbols in  $\mathcal{P}_{\mu,\sigma}$  to corresponding elements in  $Y_{\mu} = Y_m$  sharing the same name.
- $Y_{\mu}(\sigma) = Y_{\nu}(\sigma)$  for any  $\mu, \nu$  admissible to  $\sigma$ . (independent of the choices of the admissible shape)

$$D_{a;i,j}^{(0)} = \delta_{ij},$$

$$\sum_{t=0}^{r} D_{a;i,p}^{(t)} D_{a;p,j}^{\prime(r-t)} = \delta_{r0} \delta_{ij},$$

$$\left[ D_{a;i,j}^{(r)}, D_{b;h,k}^{(s)} \right] = \delta_{a,b} \sum_{t=0}^{\min(r,s)-1} \left( D_{a;h,j}^{(t)} D_{a;i,k}^{(r+s-1-t)} - D_{a;h,j}^{(r+s-1-t)} D_{a;i,k}^{(t)} \right),$$

$$\begin{split} [D_{a;i,j}^{(r)}, E_{b;h,k}^{(s)}] &= \delta_{a,b} \delta_{hj} \sum_{t=0}^{r-1} D_{a;i,p}^{(t)} E_{b;p,k}^{(r+s-1-t)} \\ &- \delta_{a,b+1} \sum_{t=0}^{r-1} D_{a;i,k}^{(t)} E_{b;h,j}^{(r+s-1-t)}, \end{split}$$

$$\begin{split} [D_{a;i,j}^{(r)},F_{b;k,h}^{(s)}] &= \delta_{a,b} \sum_{t=0}^{r-1} F_{b;k,p}^{(r+s-1-t)} D_{a;p,j}^{(t)} \\ &+ \delta_{a,b+1} \sum_{t=0}^{r-1} F_{b;i,h}^{(r+s-1-t)} D_{a;k,j}^{(t)}, \end{split}$$

$$[E_{a;i,j}^{(r)}, F_{b;k,h}^{(s)}] = \delta_{a,b}(-1) \sum_{t=0}^{r+s-1} D_{a;i,h}^{\prime(r+s-1-t)} D_{a+1;k,j}^{(t)},$$

$$[E_{a;i,j}^{(r)}, E_{a;h,k}^{(s)}] = \sum_{t=s_{a;a+1}^{\mu}+1}^{s-1} E_{a;i,k}^{(r+s-1-t)} E_{a;h,j}^{(t)} - \sum_{t=s_{a,a+1}^{\mu}+1}^{r-1} E_{a;i,k}^{(r+s-1-t)} E_{a;h,j}^{(t)},$$

$$[F_{a;i,j}^{(r)},F_{a;h,k}^{(s)}] = \sum_{t=s_{a+1,a}^{\mu}+1}^{r-1} F_{a;i,k}^{(r+s-1-t)}F_{a;h,j}^{(t)} - \sum_{t=s_{a+1,a}^{\mu}+1}^{s-1} F_{a;i,k}^{(r+s-1-t)}F_{a;h,j}^{(t)},$$

$$[E_{a;i,j}^{(r+1)}, E_{a+1;h,k}^{(s)}] - [E_{a;i,j}^{(r)}, E_{a+1;h,k}^{(s+1)}] = \delta_{h,j} E_{a;i,q}^{(r)} E_{a+1;q,k}^{(s)},$$

$$[F_{a;i,j}^{(r+1)},F_{a+1;h,k}^{(s)}] - [F_{a;i,j}^{(r)},F_{a+1;h,k}^{(s+1)}] = (-1)\delta_{i,k}F_{a+1;h,q}^{(s)}F_{a;q,j}^{(r)},$$

$$[E^{(r)}_{a;i,j},E^{(s)}_{b;h,k}]=0 \qquad \qquad \text{if} \quad |b-a|>1 \quad \text{or} \quad \text{if} \quad b=a+1 \text{ and } h\neq j,$$

$$[F^{(r)}_{a;i,j},F^{(s)}_{b;h,k}]=0 \qquad \qquad \text{if} \quad |b-a|>1 \quad \text{or} \quad \text{if} \quad b=a+1 \text{ and} \ i\neq k,$$

$$\begin{split} & \left[E_{a;i,j}^{(r)}, \left[E_{a;h,k}^{(s)}, E_{b;f,g}^{(t)}\right]\right] + \left[E_{a;i,j}^{(s)}, \left[E_{a;h,k}^{(r)}, E_{b;f,g}^{(t)}\right]\right] = 0 \quad \text{if } |a-b| \ge 1, \\ & \left[F_{a;i,j}^{(r)}, \left[F_{a;h,k}^{(s)}, F_{b;f,g}^{(t)}\right]\right] + \left[F_{a;i,j}^{(s)}, \left[F_{a;h,k}^{(r)}, F_{b;f,g}^{(t)}\right]\right] = 0 \quad \text{if } |a-b| \ge 1. \end{split}$$

In the relations, p and q are taken summed, and the indices r, s, t run over all integers such that the corresponding elements make sense in  $Y_{\mu}(\sigma)$ .

#### Remark

Setting all  $s_{i,j} = 0$  (i.e.,  $\sigma$  is the zero matrix), we get the defining relations of the whole Yangian  $Y_{\mu}$  given in BK'05.

- Recall that  $\pi \leftrightarrow (\sigma, \ell)$ . We have used  $\sigma$  to define a subalgebra  $Y_{\mu}(\sigma)$ . Now it's time to get  $\ell$  involved.
- Denote by  $I_\ell$  the 2-sided ideal of  $Y_\mu(\sigma)$  generated by

$$\{D_{1;i,j}^{(r)} \mid 1 \le i, j \le \mu_1, r \ge p_1\},\$$

where  $p_1$  is the number of boxes in the top row of  $\pi$ , which is determined by  $\sigma$  and  $\ell$ .

•  $Y^{\ell}_{\mu}(\sigma) := Y_{\mu}(\sigma)/I_{\ell}$ , called the *shifted Yangian of level*  $\ell$ .

- Recall that  $\pi \leftrightarrow (\sigma, \ell)$ . We have used  $\sigma$  to define a subalgebra  $Y_{\mu}(\sigma)$ . Now it's time to get  $\ell$  involved.
- Denote by  $I_\ell$  the 2-sided ideal of  $Y_\mu(\sigma)$  generated by

$$\{D_{1;i,j}^{(r)} \mid 1 \le i, j \le \mu_1, r \ge p_1\},\$$

where  $p_1$  is the number of boxes in the top row of  $\pi$ , which is determined by  $\sigma$  and  $\ell$ .

•  $Y^{\ell}_{\mu}(\sigma) := Y_{\mu}(\sigma)/I_{\ell}$ , called the *shifted Yangian of level*  $\ell$ .

- Recall that  $\pi \leftrightarrow (\sigma, \ell)$ . We have used  $\sigma$  to define a subalgebra  $Y_{\mu}(\sigma)$ . Now it's time to get  $\ell$  involved.
- Denote by  $I_\ell$  the 2-sided ideal of  $Y_\mu(\sigma)$  generated by

$$\{D_{1;i,j}^{(r)} \mid 1 \le i, j \le \mu_1, r \ge p_1\},\$$

where  $p_1$  is the number of boxes in the top row of  $\pi$ , which is determined by  $\sigma$  and  $\ell$ .

•  $Y^{\ell}_{\mu}(\sigma) := Y_{\mu}(\sigma)/I_{\ell}$ , called the shifted Yangian of level  $\ell$ .
### Theorem (BK'06, Adv. Math.)

There exists an algebra isomorphism between  $Y_{\mu}^{\ell}(\sigma)$  and  $\mathcal{W}_{\pi}$ .

- One may study representation theory of *W*-algebra via tools from representation theory of Yangian, which people understand better (methods developed by Drinfeld, Molev, Nazarov, Olshanski, Tarasov,...etc). [BK'08, Mem. AMS.][BK'08, Sel. Math.]
- Triggered the study of shifted Yangian in geometric representation theory (a series of papers about Coulomb branches by different groups of people: Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weeks, Yacobi, etc.).

#### Theorem (BK'06, Adv. Math.)

There exists an algebra isomorphism between  $Y^{\ell}_{\mu}(\sigma)$  and  $\mathcal{W}_{\pi}$ .

- One may study representation theory of W-algebra via tools from representation theory of Yangian, which people understand better (methods developed by Drinfeld, Molev, Nazarov, Olshanski, Tarasov,...etc). [BK'08, Mem. AMS.][BK'08, Sel. Math.]
- Triggered the study of shifted Yangian in geometric representation theory (a series of papers about Coulomb branches by different groups of people: Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weeks, Yacobi, etc.).

#### Theorem (BK'06, Adv. Math.)

There exists an algebra isomorphism between  $Y^{\ell}_{\mu}(\sigma)$  and  $\mathcal{W}_{\pi}$ .

- One may study representation theory of W-algebra via tools from representation theory of Yangian, which people understand better (methods developed by Drinfeld, Molev, Nazarov, Olshanski, Tarasov,...etc). [BK'08, Mem. AMS.][BK'08, Sel. Math.]
- Triggered the study of shifted Yangian in geometric representation theory (a series of papers about Coulomb branches by different groups of people: Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weeks, Yacobi, etc.).

- **1** Finite *W*-algebra of  $\mathfrak{gl}_M$
- 2 Yangian associated to  $\mathfrak{gl}_m$
- 3 Presentation of W-algebra in terms of Yangian
- 4 Super version of the story

48 / 70

- One defines (finite) W-superalgebra from a good pair (e, h) in gl<sub>M|N</sub> in a very similar way to the gl<sub>M</sub> case with some modifications:
  - (1) Choose  $e \in (\mathfrak{gl}_{M|N})_{\overline{0}}$  to be even nilpotent (assume this from now on)
  - ② Replace tr by str when defining  $\chi : \mathfrak{g} \to \mathbb{C}, \ \chi(y) = \mathsf{str}(y \cdot e).$
  - Same definition of m, p and χ-twisted action of m on p, and collect the annihilated elements

$$\mathcal{W}_{e,h} := U(\mathfrak{p})^{ad\mathfrak{m}} = \{y \in U(\mathfrak{p}) | (a - \chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m} \}$$

- One defines (finite) W-superalgebra from a good pair (e, h) in gl<sub>M|N</sub> in a very similar way to the gl<sub>M</sub> case with some modifications:
  - $\ \, \textbf{O} \ \ \, \textbf{Choose} \ \ e \in (\mathfrak{gl}_{\mathcal{M}|\mathcal{N}})_{\overline{0}} \ \ \textbf{to be even nilpotent} \ \ (\text{assume this from now on})$
  - 2 Replace tr by str when defining  $\chi : \mathfrak{g} \to \mathbb{C}, \chi(y) = \operatorname{str}(y \cdot e)$ .
  - Same definition of m, p and χ-twisted action of m on p, and collect the annihilated elements

$$\mathcal{W}_{e,h} := U(\mathfrak{p})^{ad\mathfrak{m}} = \{y \in U(\mathfrak{p}) | (a - \chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m} \}$$

- One defines (finite) W-superalgebra from a good pair (e, h) in gl<sub>M|N</sub> in a very similar way to the gl<sub>M</sub> case with some modifications:
  - $\ \, \textbf{O} \ \ \, \textbf{Choose} \ \ e \in (\mathfrak{gl}_{\mathcal{M}|\mathcal{N}})_{\overline{0}} \ \ \textbf{to be even nilpotent} \ \ (\text{assume this from now on})$
  - **2** Replace tr by str when defining  $\chi : \mathfrak{g} \to \mathbb{C}$ ,  $\chi(y) = \operatorname{str}(y \cdot e)$ .
  - Same definition of m, p and χ-twisted action of m on p, and collect the annihilated elements

$$\mathcal{W}_{e,h} := U(\mathfrak{p})^{ad\mathfrak{m}} = \{y \in U(\mathfrak{p}) | (a - \chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m} \}$$

- One defines (finite) W-superalgebra from a good pair (e, h) in gl<sub>M|N</sub> in a very similar way to the gl<sub>M</sub> case with some modifications:
  - $\ \, {\rm Ohoose} \ e \in ({\mathfrak g}{\mathfrak l}_{{\mathcal M}|{\mathcal N}})_{\overline{0}} \ {\rm to} \ {\rm be} \ {\rm even} \ {\rm nilpotent} \ {\rm (assume this from now on)}$
  - **2** Replace tr by str when defining  $\chi : \mathfrak{g} \to \mathbb{C}, \ \chi(y) = \operatorname{str}(y \cdot e).$
  - Same definition of  $\mathfrak{m}, \mathfrak{p}$  and  $\chi$ -twisted action of  $\mathfrak{m}$  on  $\mathfrak{p}$ , and collect the annihilated elements

$$\mathcal{W}_{e,h} := U(\mathfrak{p})^{ad\mathfrak{m}} = \{y \in U(\mathfrak{p}) | (a - \chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m} \}$$

- One defines (finite) W-superalgebra from a good pair (e, h) in gl<sub>M|N</sub> in a very similar way to the gl<sub>M</sub> case with some modifications:
  - $\ \, \textbf{O} \ \ \, \textbf{Choose} \ \ e \in (\mathfrak{gl}_{\mathcal{M}|\mathcal{N}})_{\overline{0}} \ \ \textbf{to be even nilpotent} \ \ (\text{assume this from now on})$
  - **2** Replace tr by str when defining  $\chi : \mathfrak{g} \to \mathbb{C}, \chi(y) = \operatorname{str}(y \cdot e)$ .
  - Same definition of  $\mathfrak{m}, \mathfrak{p}$  and  $\chi$ -twisted action of  $\mathfrak{m}$  on  $\mathfrak{p}$ , and collect the annihilated elements

$$\mathcal{W}_{e,h} := U(\mathfrak{p})^{ad\mathfrak{m}} = \{y \in U(\mathfrak{p}) | (a - \chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m} \}$$

• The Jordan type of *e* is now described by a pair of partitions (of *M* and *N* respectively)

$$e \in \mathfrak{g}_{\overline{0}} \Rightarrow e = e_M \oplus e_N \quad \left( (\mathfrak{gl}_{M|N})_{\overline{0}} \cong \mathfrak{gl}_M \oplus \mathfrak{gl}_N \right)$$

- Stack the Young diagrams of  $e_M$  and  $e_N$  together, rearranging the rows if necessary, to form a new Young diagram.
- But we need to keep track of the origin of each row (from  $e_M$  or  $e_N$ ) by coloring the bricks, and then discretely shift the rows to form a pyramid which consists of two different colors of boxes.

• The Jordan type of *e* is now described by a pair of partitions (of *M* and *N* respectively)

$$e\in \mathfrak{g}_{\overline{0}} \Rightarrow e=e_{\mathcal{M}}\oplus e_{\mathcal{N}} \quad \left((\mathfrak{gl}_{\mathcal{M}|\mathcal{N}})_{\overline{0}}\cong \mathfrak{gl}_{\mathcal{M}}\oplus \mathfrak{gl}_{\mathcal{N}}
ight)$$

- Stack the Young diagrams of  $e_M$  and  $e_N$  together, rearranging the rows if necessary, to form a new Young diagram.
- But we need to keep track of the origin of each row (from  $e_M$  or  $e_N$ ) by coloring the bricks, and then discretely shift the rows to form a pyramid which consists of two different colors of boxes.

• The Jordan type of *e* is now described by a pair of partitions (of *M* and *N* respectively)

$$e\in \mathfrak{g}_{\overline{0}} \Rightarrow e=e_{\mathcal{M}}\oplus e_{\mathcal{N}} \quad \left((\mathfrak{gl}_{\mathcal{M}|\mathcal{N}})_{\overline{0}}\cong \mathfrak{gl}_{\mathcal{M}}\oplus \mathfrak{gl}_{\mathcal{N}}
ight)$$

- Stack the Young diagrams of  $e_M$  and  $e_N$  together, rearranging the rows if necessary, to form a new Young diagram.
- But we need to keep track of the origin of each row (from  $e_M$  or  $e_N$ ) by coloring the bricks, and then discretely shift the rows to form a pyramid which consists of two different colors of boxes.



- $e = e^+ + e^-$ , where  $e^+ \in \mathfrak{gl}_{9|0}$  of Jordan type (7,2) and  $e^- \in \mathfrak{gl}_{0|8}$  of Jordan type (4,2,2).
- $e \in \mathfrak{g}_{\overline{0}} \Rightarrow$  every bricks in the same row have the same color (+ or -).
- The ±-labeling can be recorded as - + + from top to bottom, or 11010 (+ ↔ 0, - ↔ 1). This is called a 01-sequence.



•  $e = e^+ + e^-$ , where  $e^+ \in \mathfrak{gl}_{9|0}$  of Jordan type (7,2) and  $e^- \in \mathfrak{gl}_{0|8}$  of Jordan type (4,2,2).

•  $e \in \mathfrak{g}_{\overline{0}} \Rightarrow$  every bricks in the same row have the same color (+ or -).

 The ±-labeling can be recorded as - - + - + from top to bottom, or 11010 (+ ↔ 0, - ↔ 1). This is called a 01-sequence.



- $e = e^+ + e^-$ , where  $e^+ \in \mathfrak{gl}_{9|0}$  of Jordan type (7,2) and  $e^- \in \mathfrak{gl}_{0|8}$  of Jordan type (4,2,2).
- $e \in \mathfrak{g}_{\overline{0}} \Rightarrow$  every bricks in the same row have the same color (+ or -).
- The ±-labeling can be recorded as - + + from top to bottom, or 11010 (+ ↔ 0, - ↔ 1). This is called a 01-sequence.

51 / 70



- $e = e^+ + e^-$ , where  $e^+ \in \mathfrak{gl}_{9|0}$  of Jordan type (7,2) and  $e^- \in \mathfrak{gl}_{0|8}$  of Jordan type (4,2,2).
- $e \in \mathfrak{g}_{\overline{0}} \Rightarrow$  every bricks in the same row have the same color (+ or -).
- The  $\pm$ -labeling can be recorded as - + + from top to bottom, or 11010 ( $+ \leftrightarrow 0, \leftrightarrow 1$ ). This is called a 01-sequence.

• Labeling + boxes with  $1, \dots, M$  and - boxes with  $\overline{1}, \dots, \overline{N}$ , one can explicitly write down matrices  $e_{\pi}$  and  $h_{\pi}$  in  $\mathfrak{gl}_{M|N}$  exactly the same way as before, and they do form a good pair.

#### Theorem (Hoyt'12)

- It makes sense to write  $W_{\pi} = W_{(e_{\pi},h_{\pi})}$  and every *W*-superalgebra must be of this form due the the theorem above.
- The pyramid π now can be uniquely recorded by a triple (σ, ℓ, b) where σ is a shift matrix of size m + n, ℓ is the number of boxes in the bottom row of π, and b is the 01-sequence recording the color of rows from top to bottom.

• Labeling + boxes with  $1, \dots, M$  and - boxes with  $\overline{1}, \dots, N$ , one can explicitly write down matrices  $e_{\pi}$  and  $h_{\pi}$  in  $\mathfrak{gl}_{M|N}$  exactly the same way as before, and they do form a good pair.

### Theorem (Hoyt'12)

- It makes sense to write  $W_{\pi} = W_{(e_{\pi},h_{\pi})}$  and every *W*-superalgebra must be of this form due the the theorem above.
- The pyramid π now can be uniquely recorded by a triple (σ, ℓ, b) where σ is a shift matrix of size m + n, ℓ is the number of boxes in the bottom row of π, and b is the 01-sequence recording the color of rows from top to bottom.

• Labeling + boxes with  $1, \dots, M$  and - boxes with  $\overline{1}, \dots, N$ , one can explicitly write down matrices  $e_{\pi}$  and  $h_{\pi}$  in  $\mathfrak{gl}_{M|N}$  exactly the same way as before, and they do form a good pair.

### Theorem (Hoyt'12)

- It makes sense to write  $W_{\pi} = W_{(e_{\pi},h_{\pi})}$  and every *W*-superalgebra must be of this form due the the theorem above.
- The pyramid π now can be uniquely recorded by a triple (σ, ℓ, b) where σ is a shift matrix of size m + n, ℓ is the number of boxes in the bottom row of π, and b is the 01-sequence recording the color of rows from top to bottom.

• Labeling + boxes with  $1, \dots, M$  and - boxes with  $\overline{1}, \dots, \overline{N}$ , one can explicitly write down matrices  $e_{\pi}$  and  $h_{\pi}$  in  $\mathfrak{gl}_{M|N}$  exactly the same way as before, and they do form a good pair.

### Theorem (Hoyt'12)

- It makes sense to write  $W_{\pi} = W_{(e_{\pi},h_{\pi})}$  and every *W*-superalgebra must be of this form due the the theorem above.
- The pyramid  $\pi$  now can be uniquely recorded by a triple  $(\sigma, \ell, \mathfrak{b})$ where  $\sigma$  is a shift matrix of size m + n,  $\ell$  is the number of boxes in the bottom row of  $\pi$ , and  $\mathfrak{b}$  is the 01-sequence recording the color of rows from top to bottom.



•  $e_{\pi} = e^+ + e^- \in (\mathfrak{gl}_{9|8})_{\overline{0}}$ , where  $e^+ = e_{3,5} + e_{1,2} + e_{2,4} + \dots + e_{8,9} \in \mathfrak{gl}_{9|0}$  and  $e^- = e_{\overline{2},\overline{5}} + e_{\overline{3},\overline{6}} + e_{\overline{1},\overline{4}} + e_{\overline{4},\overline{7}} + e_{\overline{7},\overline{8}} \in \mathfrak{gl}_{0|8}$ 

•  $h_{\pi} = -\text{diag}(-6, -4, -2, -2, 0, 0, 2, 4, 6 \mid -4, -2, -2, -2, 0, 0, 0, 2).$ 

•  $(e_{\pi}, h_{\pi})$  forms a good pair.



• 
$$e_{\pi} = e^+ + e^- \in (\mathfrak{gl}_{9|8})_{\overline{0}}$$
, where  
 $e^+ = e_{3,5} + e_{1,2} + e_{2,4} + \dots + e_{8,9} \in \mathfrak{gl}_{9|0}$  and  
 $e^- = e_{\overline{2},\overline{5}} + e_{\overline{3},\overline{6}} + e_{\overline{1},\overline{4}} + e_{\overline{4},\overline{7}} + e_{\overline{7},\overline{8}} \in \mathfrak{gl}_{0|8}$ 

•  $h_{\pi} = -\text{diag}(-6, -4, -2, -2, 0, 0, 2, 4, 6 \mid -4, -2, -2, -2, 0, 0, 0, 2).$ 

•  $(e_{\pi}, h_{\pi})$  forms a good pair.



• 
$$e_{\pi} = e^+ + e^- \in (\mathfrak{gl}_{9|8})_{\overline{0}}$$
, where  
 $e^+ = e_{3,5} + e_{1,2} + e_{2,4} + \dots + e_{8,9} \in \mathfrak{gl}_{9|0}$  and  
 $e^- = e_{\overline{2,5}} + e_{\overline{3,6}} + e_{\overline{1,4}} + e_{\overline{4,7}} + e_{\overline{7,8}} \in \mathfrak{gl}_{0|8}$ 

•  $h_{\pi} = -\text{diag}(-6, -4, -2, -2, 0, 0, 2, 4, 6 | -4, -2, -2, -2, 0, 0, 0, 2).$ 

•  $(e_{\pi}, h_{\pi})$  forms a good pair.



• 
$$e_{\pi} = e^+ + e^- \in (\mathfrak{gl}_{9|8})_{\overline{0}}$$
, where  
 $e^+ = e_{3,5} + e_{1,2} + e_{2,4} + \dots + e_{8,9} \in \mathfrak{gl}_{9|0}$  and  
 $e^- = e_{\overline{2},\overline{5}} + e_{\overline{3},\overline{6}} + e_{\overline{1},\overline{4}} + e_{\overline{4},\overline{7}} + e_{\overline{7},\overline{8}} \in \mathfrak{gl}_{0|8}$ 

• 
$$h_{\pi} = -\text{diag}(-6, -4, -2, -2, 0, 0, 2, 4, 6 \mid -4, -2, -2, -2, 0, 0, 0, 2).$$

• 
$$(e_{\pi}, h_{\pi})$$
 forms a good pair.

|            | 0 \ | 0 | 0 | 1 | 3 |   |
|------------|-----|---|---|---|---|---|
|            | 0   | 0 | 0 | 1 | 3 |   |
| $\sigma =$ | 0   | 0 | 0 | 1 | 3 |   |
|            | 1   | 1 | 1 | 0 | 2 |   |
|            | 2   | 2 | 2 | 1 | 0 | Ϊ |

- $\mathfrak{b} = 11010$  is the corresponding 01-sequence.
- $\mu = (3, 1, 1)$  is the minimal admissible shape.
- $\ell$ =7, the number of boxes in the bottom row of  $\pi$ .
- $\{(e, h)\} \xleftarrow{1:1} \{(\sigma, \ell, \mathfrak{b})\}$  in the supercase.

The corresponding shift matrix is given by

$$\sigma = \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 1 & 3\\ 1 & 1 & 1 & 0 & 2\\ 2 & 2 & 2 & 1 & 0 \end{array}\right)$$

#### • $\mathfrak{b} = 11010$ is the corresponding 01-sequence.

- $\mu = (3, 1, 1)$  is the minimal admissible shape.
- $\ell$ =7, the number of boxes in the bottom row of  $\pi$ .
- $\{(e, h)\} \xleftarrow{1:1} \{(\sigma, \ell, \mathfrak{b})\}$  in the supercase.

$$\sigma = \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 1 & 3\\ 1 & 1 & 1 & 0 & 2\\ 2 & 2 & 2 & 1 & 0 \end{array}\right)$$

- $\mathfrak{b} = 11010$  is the corresponding 01-sequence.
- $\mu = (3, 1, 1)$  is the minimal admissible shape.
- $\ell$ =7, the number of boxes in the bottom row of  $\pi$ .
- $\{(e, h)\} \xleftarrow{1:1} \{(\sigma, \ell, b)\}$  in the supercase.

$$\sigma = \begin{pmatrix} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 3 \\ 1 & 1 & 1 & 0 & 2 \\ 2 & 2 & 2 & 1 & 0 \end{pmatrix}$$

- $\mathfrak{b} = 11010$  is the corresponding 01-sequence.
- $\mu = (3, 1, 1)$  is the minimal admissible shape.
- $\ell$ =7, the number of boxes in the bottom row of  $\pi$ .
- $\{(e, h)\} \xleftarrow{1:1} \{(\sigma, \ell, \mathfrak{b})\}$  in the supercase.

$$\sigma = \begin{pmatrix} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 3 \\ 1 & 1 & 1 & 0 & 2 \\ 2 & 2 & 2 & 1 & 0 \end{pmatrix}$$

- $\mathfrak{b} = 11010$  is the corresponding 01-sequence.
- $\mu = (3, 1, 1)$  is the minimal admissible shape.
- $\ell$ =7, the number of boxes in the bottom row of  $\pi$ .
- $\{(e, h)\} \xleftarrow{1:1} \{(\sigma, \ell, \mathfrak{b})\}$  in the supercase.

- The Yangian associated to  $\mathfrak{gl}_{m|n}$ , denoted by  $Y_{m|n}$ , is defined [Nazarov'91, LMP] in terms of RTT presentation as a super analogue of  $Y_m$ .
- It requires parabolic presentations to define the shifted super Yangian, but we still need some preparation first for the super setting.

- The Yangian associated to  $\mathfrak{gl}_{m|n}$ , denoted by  $Y_{m|n}$ , is defined [Nazarov'91, LMP] in terms of RTT presentation as a super analogue of  $Y_m$ .
- It requires parabolic presentations to define the shifted super Yangian, but we still need some preparation first for the super setting.

### The Yangian associated to $\mathfrak{gl}_{m|n}$

- Let b be a fixed 0<sup>m</sup>1<sup>n</sup>-sequence and let μ = (μ<sub>1</sub>,..., μ<sub>z</sub>) be a composition of m + n.
- Decompose  $\mathfrak{b}$  into z subsequence  $\mathfrak{b}_1\mathfrak{b}_2\ldots\mathfrak{b}_z$  in the obvious way.
- For example,  $\mu = (3, 1, 1)$  and  $\mathfrak{b} = 11001$  in  $Y_{2|3}$



$$|k|_a :=$$
 the k-th digit of  $\mathfrak{b}_a$ 

- Let b be a fixed 0<sup>m</sup>1<sup>n</sup>-sequence and let μ = (μ<sub>1</sub>,..., μ<sub>z</sub>) be a composition of m + n.
- Decompose  $\mathfrak{b}$  into z subsequence  $\mathfrak{b}_1\mathfrak{b}_2\ldots\mathfrak{b}_z$  in the obvious way.
- For example,  $\mu = (3, 1, 1)$  and  $\mathfrak{b} = 11001$  in  $Y_{2|3}$



$$|k|_a :=$$
 the k-th digit of  $\mathfrak{b}_a$ 

- Let b be a fixed 0<sup>m</sup>1<sup>n</sup>-sequence and let μ = (μ<sub>1</sub>,..., μ<sub>z</sub>) be a composition of m + n.
- Decompose  $\mathfrak{b}$  into z subsequence  $\mathfrak{b}_1\mathfrak{b}_2\ldots\mathfrak{b}_z$  in the obvious way.
- For example,  $\mu = (3, 1, 1)$  and  $\mathfrak{b} = 11001$  in  $Y_{2|3}$

$$\mathfrak{b}=\overbrace{110}^{\mathfrak{b}_1}\overbrace{0}^{\mathfrak{b}_2}\overbrace{1}^{\mathfrak{b}_3}.$$

$$|k|_a :=$$
 the k-th digit of  $\mathfrak{b}_a$ 

- Let b be a fixed 0<sup>m</sup>1<sup>n</sup>-sequence and let μ = (μ<sub>1</sub>,..., μ<sub>z</sub>) be a composition of m + n.
- Decompose  $\mathfrak{b}$  into z subsequence  $\mathfrak{b}_1\mathfrak{b}_2\ldots\mathfrak{b}_z$  in the obvious way.
- For example,  $\mu = (3, 1, 1)$  and  $\mathfrak{b} = 11001$  in  $Y_{2|3}$



$$|k|_a :=$$
 the k-th digit of  $\mathfrak{b}_a$ 

### Theorem (P'16, CMP)

Let  $\mu = (\mu_1, \dots, \mu_z)$  be any composition of m + n and  $\mathfrak{b}$  be any  $0^m 1^n$ -sequence. Define  $Y_{\mu,\mathfrak{b}}$ , or simply  $Y_{\mu}$  for short, to be the abstract superalgebra generated by the following symbols

$$\{ D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z, 1 \le i, j \le \mu_a, r \in \mathbb{Z}_{\ge 0} \}, \\ \{ E_{b;h,k}^{(t)} | 1 \le b < z, 1 \le h \le \mu_a, 1 \le k \le \mu_{a+1}, t \in \mathbb{Z}_{\ge 1} \}, \\ \{ F_{b;k,h}^{(t)} | 1 \le b < z, 1 \le h \le \mu_a, 1 \le k \le \mu_{a+1}, t \in \mathbb{Z}_{\ge 1} \},$$

subject to certain relations (depending on  $\mu$  and  $\mathfrak{b}$ ). Then we have  $Y_{\mu} \cong Y_{m|n}$  as a superalgebra. Moreover, the definition is independent of the choices of  $\mu$  and  $\mathfrak{b}$  up to isomorphism.
### • We should explain how to define the parities of the generators.

• The parity of  $D_{a;i,j}^{(r)}$ , r > 0 is defined by

$$|D_{a;i,j}^{(r)}| := |i|_a + |j|_a \pmod{2}$$

• Similarly we set

 $E_{b;h,k}^{(t)}| := |h|_b + |k|_{b+1} (mod2)$  and  $|F_{b;k,h}^{(t)}| := |k|_{b+1} + |h|_b (mod2)$ 

 $\bullet$  Keep in mind that they are determined by a given  $\mathfrak{b}.$ 

- We should explain how to define the parities of the generators.
- The parity of  $D_{a;i,j}^{(r)}$ , r > 0 is defined by

$$|D_{a;i,j}^{(r)}| := |i|_a + |j|_a \pmod{2}$$

• Similarly we set

 $E_{b;h,k}^{(t)}| := |h|_b + |k|_{b+1} (mod2)$  and  $|F_{b;k,h}^{(t)}| := |k|_{b+1} + |h|_b (mod2)$ 

 $\bullet$  Keep in mind that they are determined by a given  $\mathfrak{b}.$ 

- We should explain how to define the parities of the generators.
- The parity of  $D_{a;i,j}^{(r)}$ , r > 0 is defined by

$$|D_{a;i,j}^{(r)}| := |i|_a + |j|_a \pmod{2}$$

Similarly we set

$$|E_{b;h,k}^{(t)}| := |h|_b + |k|_{b+1} (\mathsf{mod}2)$$
 and  $|F_{b;k,h}^{(t)}| := |k|_{b+1} + |h|_b (\mathsf{mod}2)$ 

 $\bullet$  Keep in mind that they are determined by a given  $\mathfrak{b}.$ 

- We should explain how to define the parities of the generators.
- The parity of  $D_{a;i,j}^{(r)}$ , r > 0 is defined by

$$|D_{a;i,j}^{(r)}| := |i|_a + |j|_a \pmod{2}$$

Similarly we set

$$E_{b;h,k}^{(t)}| := |h|_b + |k|_{b+1} (mod2)$$
 and  $|F_{b;k,h}^{(t)}| := |k|_{b+1} + |h|_b (mod2)$ 

• Keep in mind that they are determined by a given  $\mathfrak{b}$ .

$$\begin{split} D^{(0)}_{a;i,j} &= \delta_{ij}, \\ \sum_{t=0}^{r} D^{(t)}_{a;i,p} D^{\prime(r-t)}_{a;p,j} &= \delta_{r0} \delta_{ij}, \\ \left[ D^{(r)}_{a;i,j}, D^{(s)}_{b;h,k} \right] &= \delta_{ab} (-1)^{|i|_{a}|j|_{a} + |i|_{a}|h|_{a} + |j|_{a}|h|_{a}} \times \\ & \sum_{t=0}^{\min(r,s)-1} \left( D^{(t)}_{a;h,j} D^{(r+s-1-t)}_{a;h,j} - D^{(r+s-1-t)}_{a;h,j} D^{(t)}_{a;i,k} \right), \end{split}$$

# Defining Relations for $Y_{\mu} = Y_{m|n}$ (continued)

$$\begin{split} [D_{a;i,j}^{(r)}, E_{b;h,k}^{(s)}] &= \delta_{a,b} \delta_{hj} (-1)^{|h|_{a}|j|_{a}} \sum_{t=0}^{r-1} D_{a;i,p}^{(t)} E_{b;p,k}^{(r+s-1-t)} \\ &- \delta_{a,b+1} (-1)^{|h|_{b}|k|_{a}+|h|_{b}|j|_{a}+|j|_{a}|k|_{a}} \sum_{t=0}^{r-1} D_{a;i,k}^{(t)} E_{b;h,j}^{(r+s-1-t)}, \end{split}$$

$$\begin{split} [D_{a;i,j}^{(r)}, F_{b;h,k}^{(s)}] &= \delta_{a,b} (-1)^{|i|_{a}|j|_{a} + |h|_{a+1}|i|_{a} + |h|_{a+1}|j|_{a}} \sum_{t=0}^{r-1} F_{b;h,p}^{(r+s-1-t)} D_{a;p,j}^{(t)} \\ &+ \delta_{a,b+1} (-1)^{|h|_{a}|k|_{b} + |h|_{a}|j|_{a} + |j|_{a}|k|_{b}} \sum_{t=0}^{r-1} F_{b;i,k}^{(r+s-1-t)} D_{a;h,j}^{(t)}, \end{split}$$

# Defining Relations for $Y_{\mu} = \overline{Y_{m|n}(\text{continued})}$

$$[E_{a;i,j}^{(r)},F_{b;h,k}^{(s)}]$$

$$= \delta_{a,b}(-1)^{|h|_{a+1}|k|_{a}+|j|_{a+1}|k|_{a}+|h|_{a+1}|j|_{a+1}+1} \sum_{t=0}^{r+s-1} D_{a;i,k}^{\prime(r+s-1-t)} D_{a+1;h,j}^{(t)},$$

$$\begin{split} [E_{a;i,j}^{(r)}, E_{a;h,k}^{(s)}] &= (-1)^{|h|_{a}|j|_{a+1}+|j|_{a+1}|k|_{a+1}+|h|_{a}|k|_{a+1}} \times \\ & (\sum_{t=1}^{s-1} E_{a;i,k}^{(r+s-1-t)} E_{a;h,j}^{(t)} - \sum_{t=1}^{r-1} E_{a;i,k}^{(r+s-1-t)} E_{a;h,j}^{(t)}), \end{split}$$

$$[F_{a;i,j}^{(r)}, F_{a;h,k}^{(s)}] = (-1)^{|h|_{a+1}|j|_a + |j|_a|k|_a + |h|_{a+1}|k|_a} \times \left(\sum_{t=1}^{r-1} F_{a;i,k}^{(r+s-1-t)} F_{a;h,j}^{(t)} - \sum_{t=1}^{s-1} F_{a;i,k}^{(r+s-1-t)} F_{a;h,j}^{(t)}\right),$$

$$[\mathcal{E}_{a;i,j}^{(r+1)}, \mathcal{E}_{a+1;h,k}^{(s)}] - [\mathcal{E}_{a;i,j}^{(r)}, \mathcal{E}_{a+1;h,k}^{(s+1)}] = (-1)^{|j|_{a+1}|h|_{a+1}} \delta_{h,j} \mathcal{E}_{a;i,q}^{(r)} \mathcal{E}_{a+1;q,k}^{(s)},$$

$$\begin{split} [F_{a;i,j}^{(r+1)}, F_{a+1;h,k}^{(s)}] &- [F_{a;i,j}^{(r)}, F_{a+1;h,k}^{(s+1)}] \\ &= (-1)^{|i|_{a+1}(|j|_a+|h|_{a+2})+|j|_a|h|_{a+2}+1} \delta_{i,k} F_{a+1;h,q}^{(s)} F_{a;q,j}^{(r)}, \end{split}$$

 $[E_{a;i,j}^{(r)}, E_{b;h,k}^{(s)}] = 0 if |b-a| > 1 or if b = a+1 and h \neq j,$  $[F_{a;i,j}^{(r)}, F_{b;h,k}^{(s)}] = 0 if |b-a| > 1 or if b = a+1 and i \neq k,$ 

$$\begin{split} & \left[E_{a;i,j}^{(r)}, \left[E_{a;h,k}^{(s)}, E_{b;f,g}^{(t)}\right]\right] + \left[E_{a;i,j}^{(s)}, \left[E_{a;h,k}^{(r)}, E_{b;f,g}^{(t)}\right]\right] = 0 \quad \text{if } |a-b| \ge 1, \\ & \left[F_{a;i,j}^{(r)}, \left[F_{a;h,k}^{(s)}, F_{b;f,g}^{(t)}\right]\right] + \left[F_{a;i,j}^{(s)}, \left[F_{a;h,k}^{(r)}, F_{b;f,g}^{(t)}\right]\right] = 0 \quad \text{if } |a-b| \ge 1, \\ & \left[\left[E_{a;i,f_{1}}^{(r)}, E_{a+1;f_{2},j}^{(1)}\right], \left[E_{a+1;h,g_{1}}^{(1)}, E_{a+2;g_{2},k}^{(s)}\right]\right] = 0 \quad \text{when } |h|_{a+1} + |j|_{a+2} = 1, \\ & \left[\left[F_{a;i,f_{1}}^{(r)}, F_{a+1;f_{2},j}^{(1)}\right], \left[F_{a+1;h,g_{1}}^{(1)}, F_{a+2;g_{2},k}^{(s)}\right]\right] = 0 \quad \text{when } |j|_{a+1} + |h|_{a+2} = 1, \end{split}$$

Last two: appear when  $z \ge 4$ , super phenomenon, didn't appear in [BK'05]. These come from similar relations given in [Gow'07, CMP], which are the special case when  $\mu = (1^{m+n})$  and standard b in our setting.

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall  $\pi \longleftrightarrow (\sigma, \ell, \mathfrak{b})$ .
- Choose a composition  $\mu$  admissible to  $\sigma$ , we can define shifted super Yangian  $Y_{\mu}(\sigma)$  exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to *W*-superalgebra, we need a presentation of  $Y_{\mu}(\sigma)$ ; that is, we need to explicitly write down the defining relations of  $Y_{\mu}(\sigma)$  as well.

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall  $\pi \longleftrightarrow (\sigma, \ell, \mathfrak{b})$ .
- Choose a composition  $\mu$  admissible to  $\sigma$ , we can define shifted super Yangian  $Y_{\mu}(\sigma)$  exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to *W*-superalgebra, we need a presentation of  $Y_{\mu}(\sigma)$ ; that is, we need to explicitly write down the defining relations of  $Y_{\mu}(\sigma)$  as well.

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall  $\pi \longleftrightarrow (\sigma, \ell, \mathfrak{b})$ .
- Choose a composition  $\mu$  admissible to  $\sigma$ , we can define shifted super Yangian  $Y_{\mu}(\sigma)$  exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to *W*-superalgebra, we need a presentation of  $Y_{\mu}(\sigma)$ ; that is, we need to explicitly write down the defining relations of  $Y_{\mu}(\sigma)$  as well.

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall  $\pi \longleftrightarrow (\sigma, \ell, \mathfrak{b})$ .
- Choose a composition  $\mu$  admissible to  $\sigma$ , we can define shifted super Yangian  $Y_{\mu}(\sigma)$  exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to *W*-superalgebra, we need a presentation of  $Y_{\mu}(\sigma)$ ; that is, we need to explicitly write down the defining relations of  $Y_{\mu}(\sigma)$  as well.

Set  $\mathcal{P}_{\mu,\sigma}$  to be the union of the symbols  $\{D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z; 1 \le i, j \le \mu_a; r \ge 0\},$   $\{E_{b;h,k}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b,b+1}^{\mu}\},$  $\{F_{b;k,h}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b+1,b}^{\mu}\},$  where their parities are determined by the 01-sequence b.

#### Theorem (P'21, Adv. Math.)

- One can identify  $Y_{\mu}(\sigma)$  as a subalgebra of  $Y_{\mu} = Y_{m|n}$  by identifying the symbols in  $\mathcal{P}_{\mu,\sigma}$  to corresponding elements in  $Y_{\mu}$  sharing the same name (obtained via quasideterminant).
- Furthermore,  $Y_{\mu}(\sigma) = Y_{\nu}(\sigma)$  for any  $\mu, \nu$  admissible to  $\sigma$ .

Set  $\mathcal{P}_{\mu,\sigma}$  to be the union of the symbols  $\{D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z; 1 \le i, j \le \mu_a; r \ge 0\},$   $\{E_{b;h,k}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b,b+1}^{\mu}\},$  $\{F_{b;k,h}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b+1,b}^{\mu}\},$  where their parities are determined by the 01-sequence b.

#### Theorem (P'21, Adv. Math.)

- One can identify  $Y_{\mu}(\sigma)$  as a subalgebra of  $Y_{\mu} = Y_{m|n}$  by identifying the symbols in  $\mathcal{P}_{\mu,\sigma}$  to corresponding elements in  $Y_{\mu}$  sharing the same name (obtained via quasideterminant).
- Furthermore,  $Y_{\mu}(\sigma) = Y_{\nu}(\sigma)$  for any  $\mu, \nu$  admissible to  $\sigma$ .

Set  $\mathcal{P}_{\mu,\sigma}$  to be the union of the symbols  $\{D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z; 1 \le i, j \le \mu_a; r \ge 0\},$   $\{E_{b;h,k}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b,b+1}^{\mu}\},$  $\{F_{b;k,h}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b+1,b}^{\mu}\},$  where their parities are determined by the 01-sequence b.

#### Theorem (P'21, Adv. Math.)

- One can identify  $Y_{\mu}(\sigma)$  as a subalgebra of  $Y_{\mu} = Y_{m|n}$  by identifying the symbols in  $\mathcal{P}_{\mu,\sigma}$  to corresponding elements in  $Y_{\mu}$  sharing the same name (obtained via quasideterminant).
- Furthermore,  $Y_{\mu}(\sigma) = Y_{\nu}(\sigma)$  for any  $\mu, \nu$  admissible to  $\sigma$ .

Set  $\mathcal{P}_{\mu,\sigma}$  to be the union of the symbols  $\{D_{a;i,j}^{(r)}, D_{a;i,j}^{\prime(r)} | 1 \le a \le z; 1 \le i, j \le \mu_a; r \ge 0\},$   $\{E_{b;h,k}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b,b+1}^{\mu}\},$  $\{F_{b;k,h}^{(t)} | 1 \le b < z; 1 \le h \le \mu_b, 1 \le k \le \mu_{b+1}; t > s_{b+1,b}^{\mu}\},$  where their parities are determined by the 01-sequence b.

#### Theorem (P'21, Adv. Math.)

- One can identify  $Y_{\mu}(\sigma)$  as a subalgebra of  $Y_{\mu} = Y_{m|n}$  by identifying the symbols in  $\mathcal{P}_{\mu,\sigma}$  to corresponding elements in  $Y_{\mu}$  sharing the same name (obtained via quasideterminant).
- Furthermore,  $Y_{\mu}(\sigma) = Y_{\nu}(\sigma)$  for any  $\mu, \nu$  admissible to  $\sigma$ .

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in  $Y_{\mu}(\sigma)$ .
- The most difficult part is to show the "extra" relations hold in  $Y_{\mu}$ :

$$\begin{bmatrix} [E_{a;i,f_1}^{(r)}, E_{a+1;f_2,j}^{(t)}], [E_{a+1;h,g_1}^{(t)}, E_{a+2;g_2,k}^{(s)}] \end{bmatrix} = 0 \text{ when } |h|_{a+1} + |j|_{a+2} = 1,$$
  
$$\begin{bmatrix} [F_{a;i,f_1}^{(r)}, F_{a+1;f_2,j}^{(t)}], [F_{a+1;h,g_1}^{(t)}, F_{a+2;g_2,k}^{(s)}] \end{bmatrix} = 0 \text{ when } |j|_{a+1} + |h|_{a+2} = 1,$$
  
for all  $t > s_{a+1,a+2}^{\mu}$  and  $t > s_{a+2,a+1}^{\mu}.$ 

- The proof in [P'16] only works for t = 1.
- We prove them by a reverse induction on the length of  $\mu$ , where the initial step ( $\mu = (1^{m+n})$ ) is established in a remark of [Tsymbaliuk'20, LMP].

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in  $Y_{\mu}(\sigma)$ .
- The most difficult part is to show the "extra" relations hold in  $Y_{\mu}$ :

$$\begin{bmatrix} [E_{a;i,f_1}^{(r)}, E_{a+1;f_2,j}^{(t)}], [E_{a+1;h,g_1}^{(t)}, E_{a+2;g_2,k}^{(s)}] \end{bmatrix} = 0 \text{ when } |h|_{a+1} + |j|_{a+2} = 1,$$

$$\begin{bmatrix} [F_{a;i,f_1}^{(r)}, F_{a+1;f_2,j}^{(t)}], [F_{a+1;h,g_1}^{(t)}, F_{a+2;g_2,k}^{(s)}] \end{bmatrix} = 0 \text{ when } |j|_{a+1} + |h|_{a+2} = 1,$$
for all  $t > s_{a+1,a+2}^{\mu}$  and  $t > s_{a+2,a+1}^{\mu}.$ 

- The proof in [P'16] only works for t = 1.
- We prove them by a reverse induction on the length of μ, where the initial step (μ = (1<sup>m+n</sup>)) is established in a remark of [Tsymbaliuk'20, LMP].

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in  $Y_{\mu}(\sigma)$ .
- The most difficult part is to show the "extra" relations hold in  $Y_{\mu}$ :

$$\begin{bmatrix} [E_{a;i,f_1}^{(r)}, E_{a+1;f_2,j}^{(t)}], [E_{a+1;h,g_1}^{(t)}, E_{a+2;g_2,k}^{(s)}] \end{bmatrix} = 0 \text{ when } |h|_{a+1} + |j|_{a+2} = 1,$$

$$\begin{bmatrix} [F_{a;i,f_1}^{(r)}, F_{a+1;f_2,j}^{(t)}], [F_{a+1;h,g_1}^{(t)}, F_{a+2;g_2,k}^{(s)}] \end{bmatrix} = 0 \text{ when } |j|_{a+1} + |h|_{a+2} = 1,$$
for all  $t > s_{a+1,a+2}^{\mu}$  and  $t > s_{a+2,a+1}^{\mu}.$ 

• The proof in [P'16] only works for t = 1.

 We prove them by a reverse induction on the length of μ, where the initial step (μ = (1<sup>m+n</sup>)) is established in a remark of [Tsymbaliuk'20, LMP].

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in  $Y_{\mu}(\sigma)$ .
- The most difficult part is to show the "extra" relations hold in  $Y_{\mu}$ :

$$\begin{split} \big[ \left[ E_{a;i,f_1}^{(r)}, E_{a+1;f_2,j}^{(t)} \right], \left[ E_{a+1;h,g_1}^{(t)}, E_{a+2;g_2,k}^{(s)} \right] \big] &= 0 \text{ when } |h|_{a+1} + |j|_{a+2} = 1, \\ \big[ \left[ F_{a;i,f_1}^{(r)}, F_{a+1;f_2,j}^{(t)} \right], \left[ F_{a+1;h,g_1}^{(t)}, F_{a+2;g_2,k}^{(s)} \right] \big] &= 0 \text{ when } |j|_{a+1} + |h|_{a+2} = 1, \\ \text{for all } t > s_{a+1,a+2}^{\mu} \text{ and } t > s_{a+2,a+1}^{\mu}. \end{split}$$

- The proof in [P'16] only works for t = 1.
- We prove them by a reverse induction on the length of μ, where the initial step (μ = (1<sup>m+n</sup>)) is established in a remark of [Tsymbaliuk'20, LMP].

$$\{D_{1;i,j}^{(r)} \mid 1 \le i, j \le \mu_1, r \ge p_1\},\$$

and let  $Y_{\mu}^{\ell}(\sigma)$  denote the quotient  $Y_{\mu}(\sigma)/I_{\ell}$ .

#### Theorem (P'21, Adv. Math.)

There exists a superalgebra isomorphism between  $Y^{\ell}_{\mu}(\sigma)$  and  $\mathcal{W}_{\pi}$ .

- Note that the definition of W<sub>e,h</sub> is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all W-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite *W*-superalgebra and its representation theory in the future.

$$\{D_{1;i,j}^{(r)} \mid 1 \le i, j \le \mu_1, r \ge p_1\},\$$

and let  $Y^{\ell}_{\mu}(\sigma)$  denote the quotient  $Y_{\mu}(\sigma)/I_{\ell}$ .

### Theorem (P'21, Adv. Math.)

There exists a superalgebra isomorphism between  $Y_{\mu}^{\ell}(\sigma)$  and  $\mathcal{W}_{\pi}$ .

- Note that the definition of W<sub>e,h</sub> is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all W-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite *W*-superalgebra and its representation theory in the future.

67 / 70

$$\{D_{1;i,j}^{(r)} \mid 1 \le i, j \le \mu_1, r \ge p_1\},\$$

and let  $Y^{\ell}_{\mu}(\sigma)$  denote the quotient  $Y_{\mu}(\sigma)/I_{\ell}$ .

### Theorem (P'21, Adv. Math.)

There exists a superalgebra isomorphism between  $Y_{\mu}^{\ell}(\sigma)$  and  $\mathcal{W}_{\pi}$ .

- Note that the definition of  $\mathcal{W}_{e,h}$  is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all W-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite *W*-superalgebra and its representation theory in the future.

$$\{D_{1;i,j}^{(r)} \mid 1 \le i, j \le \mu_1, r \ge p_1\},\$$

and let  $Y_{\mu}^{\ell}(\sigma)$  denote the quotient  $Y_{\mu}(\sigma)/I_{\ell}$ .

### Theorem (P'21, Adv. Math.)

There exists a superalgebra isomorphism between  $Y_{\mu}^{\ell}(\sigma)$  and  $\mathcal{W}_{\pi}$ .

- Note that the definition of  $\mathcal{W}_{e,h}$  is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all W-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite *W*-superalgebra and its representation theory in the future.



 $\pi$  : principal

Brown-Brundan-Goodwin'13

No extra relations!



 $\pi$  : rectangular

Briot-Ragoucy'03

RTT works



 $\pi$ : corresponds to an arbitrary even nilpotent element

P'21, Adv. Math.

Thank you for your attention.