# From nilpotent element to finite $W$-algebra 

Yung-Ning Peng<br>Department of Mathematics National Central University

TMS Annual Meeting, at Academia Sinica
Jan 18, 2022

## Outline

(1) Finite $W$-algebra of $\mathfrak{g l}_{M}$

## (3) Presentation of $W$-algebra in terms of Yangian

4 Super version of the story

## Outline

(1) Finite $W$-algebra of $\mathfrak{g l}_{M}$
(2) Yangian associated to $\mathfrak{g l}_{m}$
(3) Presentation of $W$-algebra in terms of Yangian

4 Super version of the story

## Outline

(1) Finite $W$-algebra of $\mathfrak{g l}_{M}$
(2) Yangian associated to $\mathfrak{g l}_{m}$
(3) Presentation of $W$-algebra in terms of Yangian

4 Super version of the story

## Outline

(1) Finite $W$-algebra of $\mathfrak{g l}_{M}$
(2) Yangian associated to $\mathfrak{g l}_{m}$
(3) Presentation of $W$-algebra in terms of Yangian

44 Super version of the story

## Outline

(1) Finite $W$-algebra of $\mathfrak{g l}_{M}$

## (2) Yangian associated to $\mathfrak{g l}_{m}$

## (3) Presentation of $W$-algebra in terms of Yangian

4 Super version of the story

## Nilpotent matrix in Linear Algebra

- Consider $e \in M_{M}(\mathbb{C}) \cong \mathfrak{g l}_{M}(\mathbb{C})$.
- Recall that $e$ is called nilpotent if $e^{k}=0$ for some $k$ large enough.
- Question: How many nilpotent matrices in $M_{M}(\mathbb{C})$ do we have, up to similarity (the number of orbits of nilpotent matrices under the $G L_{M}(\mathbb{C})$-conjugation)?


## Nilpotent matrix in Linear Algebra

- Base field is $\mathbb{C}$, so every matrix can be turned into its Jordan form.
- e is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- Answer: $\mathcal{P}(M)$, the partition function.
- $\mathcal{P}(M)=$ the number of ways to express $M$ as a sum of positive integers
$=$ the number of partitions of $M$
$=$ the number of Young diagrams with $M$ boxes


## Nilpotent matrix in Linear Algebra

- Base field is $\mathbb{C}$, so every matrix can be turned into its Jordan form.
- $e$ is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- Answer: $\mathcal{P}(M)$, the partition function.
- $\mathcal{P}(M)=$ the number of ways to express $M$ as a sum of positive integers
= the number of partitions of $M$
$=$ the number of Young diagrams with $M$ boxes


## Nilpotent matrix in Linear Algebra

- Base field is $\mathbb{C}$, so every matrix can be turned into its Jordan form.
- $e$ is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- Answer: $\mathcal{P}(M)$, the partition function.
- $\mathcal{P}(M)=$ the number of ways to express $M$ as a sum of positive integers
= the number of partitions of $M$
$=$ the number of Young diagrams with $M$ boxes


## Nilpotent matrix in Linear Algebra

- Base field is $\mathbb{C}$, so every matrix can be turned into its Jordan form.
- $e$ is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- Answer: $\mathcal{P}(M)$, the partition function.
- $\mathcal{P}(M)=$ the number of ways to express $M$ as a sum of positive integers
= the number of partitions of $M$
$=$ the number of Young diagrams with $M$ boxes


## Nilpotent matrix in Linear Algebra

- Base field is $\mathbb{C}$, so every matrix can be turned into its Jordan form.
- $e$ is nilpotent if and only if 0 is its only eigenvalue.
- We may arrange the Jordan blocks in a decreasing order with respect to their sizes.
- Answer: $\mathcal{P}(M)$, the partition function.
- $\mathcal{P}(M)=$ the number of ways to express $M$ as a sum of positive integers
$=$ the number of partitions of $M$
$=$ the number of Young diagrams with $M$ boxes


## Example

- Consider $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)=(4,3,1,1)$, a partition of 9 .
- It corresponds to a nilpotent $9 \times 9$ matrix $e=J_{4} \oplus J_{3} \oplus J_{1} \oplus J_{1}$, where $J_{k}$ is the Jordan block of size $k$ with eigenvalue 0 . For example, $J_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
- $\lambda$ corresponds to the following Young diagram (in French style)

- \{Partitions\} $\stackrel{\text { 1:1 }}{\longleftrightarrow}$ \{Nilpotent elements $\} \stackrel{\text { 1:1 }}{\longleftrightarrow}$ \{Young diagrams $\}$


## Example

- Consider $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)=(4,3,1,1)$, a partition of 9 .
- It corresponds to a nilpotent $9 \times 9$ matrix $e=J_{4} \oplus J_{3} \oplus J_{1} \oplus J_{1}$, where $J_{k}$ is the Jordan block of size $k$ with eigenvalue 0 . For example, $J_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
- $\lambda$ corresponds to the following Young diagram (in French style)

- \{Partitions $\} \stackrel{1: 1}{\longleftrightarrow}$ \{Nilpotent elements $\} \stackrel{1: 1}{\longleftrightarrow}\{$ Young diagrams $\}$


## Finite $W$-algebra

- Let $e \in \mathfrak{g}=\mathfrak{g l}_{M}(\mathbb{C})$ be given. One can associated a very complicated algebra structure to this $e$, called (finite) $W$-algebra.
- This structure is hidden in $U(\mathfrak{g})$, the universal enveloping algebra of $\mathfrak{g}$.
- We need many other things in order to define that structure.
- Recall the Lie bracket, or commutator notation

$$
[x, y]:=x y-y x, \quad \forall x, y \in g
$$

- Take any $x \in \mathfrak{g}$. The derivation $a d_{x}: \mathfrak{g} \rightarrow \mathfrak{g}$ given by $a d_{x}(y):=[x, y]$ is a linear map.
- If $h \in \mathfrak{g}$ is semisimple (= diagonalizable), then $\mathfrak{g}$ decomposes into a direct sum of eigenspaces of $a d_{h}$


## Finite $W$-algebra

- Let $e \in \mathfrak{g}=\mathfrak{g l}_{M}(\mathbb{C})$ be given. One can associated a very complicated algebra structure to this $e$, called (finite) $W$-algebra.
- This structure is hidden in $U(\mathfrak{g})$, the universal enveloping algebra of $\mathfrak{g}$.
- We need many other things in order to define that structure.
- Recall the Lie bracket, or commutator notation

$$
[x, y]:=x y-y x, \quad \forall x, y \in \mathfrak{g}
$$

- Take any $x \in \mathfrak{g}$. The derivation $a d_{x}$ $\mathfrak{g} \rightarrow \mathfrak{g}$ given by $\operatorname{ad}_{x}(y):=[x, y]$ is a linear map.
- If $h \in g$ is semisimple (= diagonalizable), then $g$ decomposes into a direct sum of eigenspaces of $a d_{h}$


## Finite $W$-algebra

- Let $e \in \mathfrak{g}=\mathfrak{g l}_{M}(\mathbb{C})$ be given. One can associated a very complicated algebra structure to this $e$, called (finite) $W$-algebra.
- This structure is hidden in $U(\mathfrak{g})$, the universal enveloping algebra of $\mathfrak{g}$.
- We need many other things in order to define that structure.
- Recall the Lie bracket, or commutator notation

$$
[x, y]:=x y-y x, \quad \forall x, y \in \mathfrak{g}
$$

- Take any $x \in \mathfrak{g}$. The derivation $a d_{x}: \mathfrak{g} \rightarrow \mathfrak{g}$ given by $\operatorname{ad}_{x}(y):=[x, y]$ is a linear map.
- If $h \in \mathfrak{g}$ is semisimple (= diagonalizable), then $\mathfrak{g}$ decomposes into a direct sum of eigenspaces of $a d_{h}$.


## Good grading and good pair

- We say $(e, h)$ forms a good pair of $\mathfrak{g}$ if
(i) $e \in \mathfrak{g}$ is nilpotent and $h \in \mathfrak{g}$ is semisimple.
(ii) $\mathrm{ad}_{h}$ gives a good grading on $\mathfrak{g}$, which means that



## Good grading and good pair

- We say $(e, h)$ forms a good pair of $\mathfrak{g}$ if
(i) $e \in \mathfrak{g}$ is nilpotent and $h \in \mathfrak{g}$ is semisimple.
(ii) $\mathrm{ad}_{h}$ gives a good grading on $\mathfrak{g}$, which means that
(a) eigenvalues(=gradings) of $a d_{h}$ are all integers:

$$
\mathfrak{g}=\bigoplus_{j \in \mathbb{Z}} \mathfrak{g}(j), \text { where } \mathfrak{g}(j):=\{x \in \mathfrak{g} \mid[h, x]=j x\}
$$

(b) $e \in \mathfrak{g}(2)$ (that is, $[h, e]=2 e$ ).
(c) $\operatorname{ad}_{e}: \mathfrak{g}(j) \rightarrow \mathfrak{g}(j+2)$ is injective for $j \leq-1$
(d) ad $_{e}: \mathfrak{g}(j) \rightarrow \mathfrak{g}(j+2)$ is surjective for $j \geq-1$
(iii) In addition, if $\mathfrak{g}(j)=0$ for all odd $j$, then we say ad $h$ gives an even good grading and $(e, h)$ form an even good pair.

## Good grading and good pair

- We say $(e, h)$ forms a good pair of $\mathfrak{g}$ if
(i) $e \in \mathfrak{g}$ is nilpotent and $h \in \mathfrak{g}$ is semisimple.
(ii) $\mathrm{ad}_{h}$ gives a good grading on $\mathfrak{g}$, which means that
(a) eigenvalues(=gradings) of $a d_{h}$ are all integers:

$$
\mathfrak{g}=\bigoplus_{j \in \mathbb{Z}} \mathfrak{g}(j), \text { where } \mathfrak{g}(j):=\{x \in \mathfrak{g} \mid[h, x]=j x\}
$$

(b) $e \in \mathfrak{g}(2)$ (that is, $[h, e]=2 e$ ).
(c) $\operatorname{ad}_{e}: \mathfrak{g}(j) \rightarrow \mathfrak{g}(j+2)$ is injective for $j \leq-1$
(d) ad $_{e}: \mathfrak{g}(j) \rightarrow \mathfrak{g}(j+2)$ is surjective for $j \geq-1$
(iii) In addition, if $\mathfrak{g}(j)=0$ for all odd $j$, then we say ad $_{h}$ gives an even good grading and $(e, h)$ form an even good pair.

## Example (Dynkin Grading)

Take any nilpotent $e \in \mathfrak{g}$. Always exists an $\mathfrak{s l}_{2}$-triple $(e, h, f)$ in $\mathfrak{g}$ by Jacobson-Morozov Theorem. Then $(e, h)$ is a good pair by $\mathfrak{s l}_{2}$-repn theory.


## Example (Dynkin Grading)

Take any nilpotent $e \in \mathfrak{g}$. Always exists an $\mathfrak{s l}_{2}$-triple $(e, h, f)$ in $\mathfrak{g}$ by Jacobson-Morozov Theorem. Then $(e, h)$ is a good pair by $\mathfrak{s l}_{2}$-repn theory.

- Let $h=\operatorname{diag}(1,0,-1), e=e_{13}$. Then $f=e_{31}$ will produce an $\mathfrak{s l}_{2}$-triple $(e, h, f)$ in $\mathfrak{g l}_{3}$. The grading of $\mathfrak{g l}_{3}$ given by $\operatorname{ad}_{h}$ is given as below

$$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & -1 & 0
\end{array}\right]
$$

Easy to check that $(e, h)$ forms a good pair (but not even) for $\mathfrak{g l}_{3}$.

- Therefore, good pair always exists for any given e.


## Example (Dynkin Grading)

Take any nilpotent $e \in \mathfrak{g}$. Always exists an $\mathfrak{s l}_{2}$-triple $(e, h, f)$ in $\mathfrak{g}$ by Jacobson-Morozov Theorem. Then $(e, h)$ is a good pair by $\mathfrak{s l}_{2}$-repn theory.

- Let $h=\operatorname{diag}(1,0,-1), e=e_{13}$. Then $f=e_{31}$ will produce an $\mathfrak{s l}_{2}$-triple $(e, h, f)$ in $\mathfrak{g l}_{3}$. The grading of $\mathfrak{g l}_{3}$ given by $\operatorname{ad}_{h}$ is given as below

$$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & -1 & 0
\end{array}\right]
$$

Easy to check that $(e, h)$ forms a good pair (but not even) for $\mathfrak{g l}_{3}$.

- Therefore, good pair always exists for any given $e$.

For a fixed $e$, there exist other good pairs in general.

- Let $e=e_{13}$ (same as above) and $h^{\prime}=\operatorname{diag}(1,1,-1)$. An easy calculation shows that $\left(e, h^{\prime}\right)$ also forms an even good pair for $\mathfrak{g l}_{3}$. The grading of $\mathfrak{g l}_{3}$ given by ad $h^{\prime}$ is recored as

$$
\left[\begin{array}{ccc}
0 & 0 & 2 \\
0 & 0 & 2 \\
-2 & -2 & 0
\end{array}\right]
$$

- Fact: even good pair always exists for any given e.

For a fixed $e$, there exist other good pairs in general.

- Let $e=e_{13}$ (same as above) and $h^{\prime}=\operatorname{diag}(1,1,-1)$. An easy calculation shows that $\left(e, h^{\prime}\right)$ also forms an even good pair for $\mathfrak{g l}_{3}$. The grading of $\mathfrak{g l}_{3}$ given by ad $h^{\prime}$ is recored as

$$
\left[\begin{array}{ccc}
0 & 0 & 2 \\
0 & 0 & 2 \\
-2 & -2 & 0
\end{array}\right]
$$

- Fact: even good pair always exists for any given e.


## Definition of finite $W$-algebra

- Given an even good pair $(e, h)$.
- Define the following subalgebras

- Define $\chi \in \mathfrak{g}^{*}$ by

where - is the usual matrix multiplication.


## Definition of finite $W$-algebra

- Given an even good pair $(e, h)$.
- Define the following subalgebras

$$
\mathfrak{m}=\bigoplus_{j \leq-2} \mathfrak{g}(j), \quad \mathfrak{p}=\bigoplus_{j \geq 0} \mathfrak{g}(j)
$$

- Define $\chi \in \mathfrak{g}^{*}$ by

where • is the usual matrix multiplication.


## Definition of finite $W$-algebra

- Given an even good pair $(e, h)$.
- Define the following subalgebras

$$
\mathfrak{m}=\bigoplus_{j \leq-2} \mathfrak{g}(j), \quad \mathfrak{p}=\bigoplus_{j \geq 0} \mathfrak{g}(j)
$$

- Define $\chi \in \mathfrak{g}^{*}$ by

$$
\chi(y):=\operatorname{tr}(y \cdot e), \forall y \in \mathfrak{g},
$$

where - is the usual matrix multiplication.

## Definition of finite $W$-algebra

- $I_{\chi}:=$ the left ideal of $U(\mathfrak{g})$ generated by $\{a-\chi(a) \mid a \in \mathfrak{m}\}$.
- PBW Theorem $\Rightarrow U(\mathfrak{g})=U(p) \oplus I_{\chi}$ as vector spaces.
- $\mathrm{pr}_{\chi}: U(\mathfrak{g}) \rightarrow U(\mathfrak{p})$ the natural projection.
- $\overline{\operatorname{pr}}: U(\mathrm{~g}) / I_{X} \rightarrow U(\mathfrak{p})$ isomorphism of vector space.
- Note that $U(\mathfrak{g}) / I_{\chi}$ is a quotient algebra since we only quotient over a left ideal.


## Definition of finite $W$-algebra

- $I_{\chi}:=$ the left ideal of $U(\mathfrak{g})$ generated by $\{a-\chi(a) \mid a \in \mathfrak{m}\}$.
- PBW Theorem $\Rightarrow U(\mathfrak{g})=U(\mathfrak{p}) \oplus I_{\chi}$ as vector spaces.
- $\mathrm{pr}_{\chi}: U(\mathfrak{g}) \rightarrow U(\mathfrak{p})$ the natural projection.
- $\overline{\mathrm{pr}}_{\chi}: U(\mathfrak{g}) / I_{\chi} \rightarrow U(\mathfrak{p})$ isomorphism of vector space.
- Note that $U(g) / I_{\chi}$ is a quotient algebra since we only quotient over a left ideal.


## Definition of finite $W$-algebra

- $I_{\chi}:=$ the left ideal of $U(\mathfrak{g})$ generated by $\{a-\chi(a) \mid a \in \mathfrak{m}\}$.
- PBW Theorem $\Rightarrow U(\mathfrak{g})=U(\mathfrak{p}) \oplus I_{\chi}$ as vector spaces.
- $\mathrm{pr}_{\chi}: U(\mathfrak{g}) \rightarrow U(\mathfrak{p})$ the natural projection.
- $\overline{\mathrm{pr}}_{\chi}: U(\mathfrak{g}) / I_{\chi} \rightarrow U(\mathfrak{p})$ isomorphism of vector space.
- Note that $U(\mathfrak{g}) / I_{\chi}$ is a quotient algebra since we only quotient over a left ideal.


## Definition of finite $W$-algebra

- Define a $\chi$-twisted adjoint action of $\mathfrak{m}$ on $U(\mathfrak{p}) \cong U(\mathfrak{g}) / I_{\chi}$ by

$$
a \cdot y:=\operatorname{pr}_{\chi}([a, y]), \quad a \in \mathfrak{m}, y \in U(\mathfrak{p})
$$

- An element $y \in U(\mathfrak{p})$ is annihilated by $a \in \mathfrak{m}$ means the following

since $a=\chi(a)$ in $I_{\chi}$
- We collect all elements in $U(p)$ that are annihilated by every elements of $m$, and they do form an algebra by the multiplication in $U(p)$,


## Definition of finite $W$-algebra

- Define a $\chi$-twisted adjoint action of $\mathfrak{m}$ on $U(\mathfrak{p}) \cong U(\mathfrak{g}) / I_{\chi}$ by

$$
a \cdot y:=\operatorname{pr}_{\chi}([a, y]), \quad a \in \mathfrak{m}, y \in U(\mathfrak{p})
$$

- An element $y \in U(\mathfrak{p})$ is annihilated by $a \in \mathfrak{m}$ means the following

$$
a \cdot y=0 \Leftrightarrow[a, y] \in I_{\chi} \Leftrightarrow a y-y a \in I_{\chi} \Leftrightarrow(a-\chi(a)) y \in I_{\chi}
$$

since $a=\chi(a)$ in $I_{\chi}$.

- We collect all elements in $U(p)$ that are annihilated by every elements of $m$, and they do form an algebra by the multiplication in $U(\mathfrak{p})$.


## Definition of finite $W$-algebra

- Define a $\chi$-twisted adjoint action of $\mathfrak{m}$ on $U(\mathfrak{p}) \cong U(\mathfrak{g}) / I_{\chi}$ by

$$
a \cdot y:=\operatorname{pr}_{\chi}([a, y]), \quad a \in \mathfrak{m}, y \in U(\mathfrak{p})
$$

- An element $y \in U(\mathfrak{p})$ is annihilated by $a \in \mathfrak{m}$ means the following

$$
a \cdot y=0 \Leftrightarrow[a, y] \in I_{\chi} \Leftrightarrow a y-y a \in I_{\chi} \Leftrightarrow(a-\chi(a)) y \in I_{\chi}
$$

since $a=\chi(a)$ in $I_{\chi}$.

- We collect all elements in $U(\mathfrak{p})$ that are annihilated by every elements of $\mathfrak{m}$, and they do form an algebra by the multiplication in $U(\mathfrak{p})$.


## Definition of finite $W$-algebra

## Definition (Kostant, Lynch)

The finite $W$-algebra $\mathcal{W}_{e, h}$ associated to $(e, h)$ is defined by

$$
\begin{aligned}
\mathcal{W}_{e, h} & :=U(\mathfrak{p})^{\operatorname{ad} \mathfrak{m}} \\
& =\left\{y \in U(\mathfrak{p}) \mid(a-\chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m}\right\}
\end{aligned}
$$

$=$ elements in $U(\mathfrak{p})$ that fall into $I_{\chi}$ under the $\chi$-twisted action of $\mathfrak{m}$
$=$ the set of Whittaker vectors in $U(\mathfrak{p}) \cong U(\mathfrak{g}) / I_{\chi}$

- Trivial example: $e=h=0$, then $\mathfrak{p}=\mathfrak{g}$ and $\mathfrak{m}=0$. Hence $\mathcal{W}_{e, h}=U(\mathfrak{g})$.
- Our definition here is a simplified version. In general (the grading is good but not even), the definition is much more complicated. But never mind, up to isomorphism they are all the same to us!
- From now on a "good pair" always mean an "even good pair"
- Trivial example: $e=h=0$, then $\mathfrak{p}=\mathfrak{g}$ and $\mathfrak{m}=0$. Hence $\mathcal{W}_{e, h}=U(\mathfrak{g})$.
- Our definition here is a simplified version. In general (the grading is good but not even), the definition is much more complicated. But never mind, up to isomorphism they are all the same to us!


## Theorem (Gan-Ginzburg'02, IMRN)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the Lagrangian l (appear for non-even good grading case).

## Theorem (Brundan-Goodwin'07, Proc. LMS)

Up to isomorphism, the definition of W-algebra does not depend on the choice of the good grading (that is, depends only on e).

good pair'

- Trivial example: $e=h=0$, then $\mathfrak{p}=\mathfrak{g}$ and $\mathfrak{m}=0$. Hence $\mathcal{W}_{e, h}=U(\mathfrak{g})$.
- Our definition here is a simplified version. In general (the grading is good but not even), the definition is much more complicated. But never mind, up to isomorphism they are all the same to us!


## Theorem (Gan-Ginzburg'02, IMRN)

Up to isomorphism, the definition of $W$-algebra does not depend on the choice of the Lagrangian l (appear for non-even good grading case).

## Theorem (Brundan-Goodwin'07, Proc. LMS)

Up to isomorphism, the definition of $W$-algebra does not depend on the choice of the good grading (that is, depends only on e).

- From now on a "good pair" always mean an "even good pair".
- There are other equivalent approaches to define $\mathcal{W}_{e, h}$, which means that it is an object in the intersection of different branches of mathematics. As a result, there are different approaches with different emphases to study it:
- [Boer-Tjin: 93 CMP]
- [De Sole-Kac: 06 Jpn. J. Math. ]
- [Losev: 10 J. AMS, 11 Duke., 11 Adv., 15 Inv.]
- [Premet: 95 Inv., 02 Adv., 07 J. EMS., 07 Mosc. Math. J., 10 Adv.]
- We roughly explain another definition here. to $\mathfrak{m}$ gives a 1-dim repn of $\mathfrak{m}$ and hence of $U(\mathfrak{m})$, denoted by $\mathbb{C}_{\chi}$
- Consider the following induced representation of $U(g)$ called the generalized Gelfand-Graev representation

$$
Q_{\chi}:=U(\mathrm{~g}) \otimes U(\mathrm{~m}) \mathbb{C}_{\chi} \cong U(\mathrm{~g}) / l_{\chi}
$$

- There are other equivalent approaches to define $\mathcal{W}_{e, h}$, which means that it is an object in the intersection of different branches of mathematics. As a result, there are different approaches with different emphases to study it:
- [Boer-Tjin: 93 CMP]
- [De Sole-Kac: 06 Jpn. J. Math. ]
- [Losev: 10 J. AMS, 11 Duke., 11 Adv., 15 Inv.]
- [Premet: 95 Inv., 02 Adv., 07 J. EMS., 07 Mosc. Math. J., 10 Adv.]
- We roughly explain another definition here. The restriction of $\chi \in \mathfrak{g}^{*}$ to $\mathfrak{m}$ gives a 1-dim repn of $\mathfrak{m}$ and hence of $U(\mathfrak{m})$, denoted by $\mathbb{C}_{\chi}$.
- Consider the following induced representation of $U(\mathfrak{g})$ called the
- There are other equivalent approaches to define $\mathcal{W}_{e, h}$, which means that it is an object in the intersection of different branches of mathematics. As a result, there are different approaches with different emphases to study it:
- [Boer-Tjin: 93 CMP]
- [De Sole-Kac: 06 Jpn. J. Math.]
- [Losev: 10 J. AMS, 11 Duke., 11 Adv., 15 Inv.]
- [Premet: 95 Inv., 02 Adv., 07 J. EMS., 07 Mosc. Math. J., 10 Adv.]
- We roughly explain another definition here. The restriction of $\chi \in \mathfrak{g}^{*}$ to $\mathfrak{m}$ gives a 1-dim repn of $\mathfrak{m}$ and hence of $U(\mathfrak{m})$, denoted by $\mathbb{C}_{\chi}$.
- Consider the following induced representation of $U(\mathfrak{g})$ called the generalized Gelfand-Graev representation

$$
Q_{\chi}:=U(\mathfrak{g}) \otimes_{U(\mathfrak{m})} \mathbb{C}_{\chi} \cong U(\mathfrak{g}) / I_{\chi}
$$

- Take any $u \in \mathcal{W}_{e, h}=\left\{y \in U(\mathfrak{p}) \mid[a, y]=(a-\chi(a)) y \in I_{\chi} \forall a \in \mathfrak{m}\right\}$
- Note that $I_{\chi}$ is invariant under right multiplication by $u$, which makes $Q_{\chi} \cong U(\mathfrak{g}) / I_{\chi}$ into a $\left(U(\mathfrak{g}), \mathcal{W}_{e, h}\right)$-bimodule.
- One can show that the associated algebra homomorphism

is actually an isomorphism. This gives an alternative definition of $W$-algebra as an endomorphism algebra.
- Take any $u \in \mathcal{W}_{e, h}=\left\{y \in U(\mathfrak{p}) \mid[a, y]=(a-\chi(a)) y \in I_{\chi} \forall a \in \mathfrak{m}\right\}$
- Note that $I_{\chi}$ is invariant under right multiplication by $u$, which makes $Q_{\chi} \cong U(\mathfrak{g}) / I_{\chi}$ into a $\left(U(\mathfrak{g}), \mathcal{W}_{e, h}\right)$-bimodule.
- One can show that the associated algebra homomorphism
is actually an isomorphism. This gives an alternative definition of $W$-algebra as an endomorphism algebra.
- Take any $u \in \mathcal{W}_{e, h}=\left\{y \in U(\mathfrak{p}) \mid[a, y]=(a-\chi(a)) y \in I_{\chi} \forall a \in \mathfrak{m}\right\}$
- Note that $I_{\chi}$ is invariant under right multiplication by $u$, which makes $Q_{\chi} \cong U(\mathfrak{g}) / I_{\chi}$ into a $\left(U(\mathfrak{g}), \mathcal{W}_{e, h}\right)$-bimodule.
- One can show that the associated algebra homomorphism

$$
\mathcal{W}_{e, h} \rightarrow \operatorname{End}_{U(\mathfrak{g})} Q_{\chi}^{\text {op }} \quad u \mapsto r_{u}
$$

is actually an isomorphism. This gives an alternative definition of $W$-algebra as an endomorphism algebra.

## Definition (Premet)

- Take any $u \in \mathcal{W}_{e, h}=\left\{y \in U(\mathfrak{p}) \mid[a, y]=(a-\chi(a)) y \in I_{\chi} \forall a \in \mathfrak{m}\right\}$
- Note that $I_{\chi}$ is invariant under right multiplication by $u$, which makes $Q_{\chi} \cong U(\mathfrak{g}) / I_{\chi}$ into a $\left(U(\mathfrak{g}), \mathcal{W}_{e, h}\right)$-bimodule.
- One can show that the associated algebra homomorphism

$$
\mathcal{W}_{e, h} \rightarrow \operatorname{End}_{U(\mathfrak{g})} Q_{\chi}^{o p} \quad u \mapsto r_{u}
$$

is actually an isomorphism. This gives an alternative definition of $W$-algebra as an endomorphism algebra.

## Definition (Premet)

$$
\mathcal{W}_{\chi}:=\operatorname{End}_{U(\mathfrak{g})} Q_{\chi}{ }^{o p}
$$

## Example (The smallest non-trivial example)

Take $\mathfrak{s l}_{2}=\left\{e=e_{12}, h=e_{11}-e_{22}, f=e_{21}\right\}$ in $\mathfrak{g l}_{2}$ and $(e, h)$ is a (Dynkin) good pair. The grading is recorded as $\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$. Then

- $m=\oplus_{j<0} \mathfrak{g}(j)=\mathbb{C} f=\mathbb{C e}_{21}$,
- $p=\oplus_{j \geq 0} \mathfrak{g}(j)=\mathbb{C e}+\mathbb{C} e_{11}+\mathbb{C} e_{22}$,
- $I_{\chi}=U(\mathfrak{g})(f-\chi(f))=U(\mathfrak{g})(f-\operatorname{tr}(f e))=U(g)(f-1)$.
- $s=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in U(p)$. Since $[f, s]=0 \in I_{\chi}$, we have $s \in \mathcal{W}_{e, h}$.
- The element $t:=e+\frac{1}{4} h^{2}-\frac{1}{2} h \in \mathcal{W}_{e, h}$ since $[f, t]=h(f-1) \in I_{\chi}$


## Example (The smallest non-trivial example)

Take $\mathfrak{s l}_{2}=\left\{e=e_{12}, h=e_{11}-e_{22}, f=e_{21}\right\}$ in $\mathfrak{g l}_{2}$ and $(e, h)$ is a (Dynkin) good pair. The grading is recorded as $\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$. Then

- $\mathfrak{m}=\oplus_{j<0} \mathfrak{g}(j)=\mathbb{C} f=\mathbb{C} e_{21}$,
- $\mathfrak{p}=\oplus_{j \geq 0} \mathfrak{g}(j)=\mathbb{C e}+\mathbb{C} e_{11}+\mathbb{C} e_{22}$,
- $I_{\chi}=U(\mathfrak{g})(f-\chi(f))=U(\mathfrak{g})(f-\operatorname{tr}(f e))=U(\mathfrak{g})(f-1)$.
- The element $t:=e+\frac{1}{4} h^{2}-\frac{1}{2} h \in \mathcal{W}_{e, h}$ since $[f, t]=h(f-1) \in I_{\chi}$


## Example (The smallest non-trivial example)

Take $\mathfrak{s l}_{2}=\left\{e=e_{12}, h=e_{11}-e_{22}, f=e_{21}\right\}$ in $\mathfrak{g l}_{2}$ and $(e, h)$ is a (Dynkin) good pair. The grading is recorded as $\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$. Then

- $\mathfrak{m}=\oplus_{j<0} \mathfrak{g}(j)=\mathbb{C} f=\mathbb{C} e_{21}$,
- $\mathfrak{p}=\oplus_{j \geq 0} \mathfrak{g}(j)=\mathbb{C e}+\mathbb{C} e_{11}+\mathbb{C} e_{22}$,
- $I_{\chi}=U(\mathfrak{g})(f-\chi(f))=U(\mathfrak{g})(f-\operatorname{tr}(f e))=U(\mathfrak{g})(f-1)$.
- $s=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in U(\mathfrak{p})$. Since $[f, s]=0 \in I_{\chi}$, we have $s \in \mathcal{W}_{e, h}$.


## Example (The smallest non-trivial example)

Take $\mathfrak{s l}_{2}=\left\{e=e_{12}, h=e_{11}-e_{22}, f=e_{21}\right\}$ in $\mathfrak{g l}_{2}$ and $(e, h)$ is a (Dynkin) good pair. The grading is recorded as $\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$. Then

- $\mathfrak{m}=\oplus_{j<0} \mathfrak{g}(j)=\mathbb{C} f=\mathbb{C} e_{21}$,
- $\mathfrak{p}=\oplus_{j \geq 0} \mathfrak{g}(j)=\mathbb{C e}+\mathbb{C} e_{11}+\mathbb{C} e_{22}$,
- $I_{\chi}=U(\mathfrak{g})(f-\chi(f))=U(\mathfrak{g})(f-\operatorname{tr}(f e))=U(\mathfrak{g})(f-1)$.
- $s=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in U(\mathfrak{p})$. Since $[f, s]=0 \in I_{\chi}$, we have $s \in \mathcal{W}_{e, h}$.
- The element $t:=e+\frac{1}{4} h^{2}-\frac{1}{2} h \in \mathcal{W}_{e, h}$ since $[f, t]=h(f-1) \in I_{\chi}$


## Example (The smallest non-trivial example)

In fact, this special example reveals some important facts.

- s clearly commutes with anything in $U(\mathfrak{g})$
- Recall $c=e f+f e+\frac{1}{2} h^{2}=2 e f+\frac{1}{2} h^{2}-h$, the Casimir element in $U(g)$, which is well-known to be central.
- This $c$ is related to the element $t \in \mathcal{W}_{e, h}$ :

- In this special case, $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$.
- Moreover, We $h$ = the polynomial algebra generated by $s$ and $t$.


## Example (The smallest non-trivial example)

In fact, this special example reveals some important facts.

- $s$ clearly commutes with anything in $U(\mathfrak{g})$.
- Recall $c=e f+f e+\frac{1}{2} h^{2}=2 e f+\frac{1}{2} h^{2}-h$, the Casimir element in $U(\mathfrak{g})$, which is well-known to be central.
- This c is related to the element $t \in \mathcal{N}_{e, h}$ :

- In this special case, $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$.
- Moreover, ${ }^{11}$ e.h $\simeq$ the polynomial algebra generated by $s$ and $t$.


## Example (The smallest non-trivial example)

In fact, this special example reveals some important facts.

- $s$ clearly commutes with anything in $U(\mathfrak{g})$.
- Recall $c=e f+f e+\frac{1}{2} h^{2}=2 e f+\frac{1}{2} h^{2}-h$, the Casimir element in $U(\mathfrak{g})$, which is well-known to be central.
- This $c$ is related to the element $t \in \mathcal{W}_{e, h}$ :

- In this special case, $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$.
- Moreover, ${ }^{11}$ e.h $\simeq$ the polynomial algebra generated by $s$ and $t$.


## Example (The smallest non-trivial example)

In fact, this special example reveals some important facts.

- $s$ clearly commutes with anything in $U(\mathfrak{g})$.
- Recall $c=e f+f e+\frac{1}{2} h^{2}=2 e f+\frac{1}{2} h^{2}-h$, the Casimir element in $U(\mathfrak{g})$, which is well-known to be central.
- This $c$ is related to the element $t \in \mathcal{W}_{e, h}$ :

$$
\operatorname{pr}_{\chi}\left(\frac{c}{2}\right)=\operatorname{pr}_{\chi}\left(e(f-1)+e+\frac{1}{4} h^{2}-\frac{1}{2} h\right)=t
$$

- In this special case, $\mathcal{W}_{e, h} \cong Z(g)$, the center of $U(g)$.
- Moreover, $\mathcal{W}_{e, h} \cong$ the polynomial algebra generated by $s$ and $t$.


## Example (The smallest non-trivial example)

In fact, this special example reveals some important facts.

- $s$ clearly commutes with anything in $U(\mathfrak{g})$.
- Recall $c=e f+f e+\frac{1}{2} h^{2}=2 e f+\frac{1}{2} h^{2}-h$, the Casimir element in $U(\mathfrak{g})$, which is well-known to be central.
- This $c$ is related to the element $t \in \mathcal{W}_{e, h}$ :

$$
\operatorname{pr}_{\chi}\left(\frac{c}{2}\right)=\operatorname{pr}_{\chi}\left(e(f-1)+e+\frac{1}{4} h^{2}-\frac{1}{2} h\right)=t
$$

- In this special case, $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$.
- Moreover, $\mathcal{W}_{e, h} \cong$ the polynomial algebra generated by $s$ and $t$.


## Example (The smallest non-trivial example)

In fact, this special example reveals some important facts.

- $s$ clearly commutes with anything in $U(\mathfrak{g})$.
- Recall $c=e f+f e+\frac{1}{2} h^{2}=2 e f+\frac{1}{2} h^{2}-h$, the Casimir element in $U(\mathfrak{g})$, which is well-known to be central.
- This $c$ is related to the element $t \in \mathcal{W}_{e, h}$ :

$$
\operatorname{pr}_{\chi}\left(\frac{c}{2}\right)=\operatorname{pr}_{\chi}\left(e(f-1)+e+\frac{1}{4} h^{2}-\frac{1}{2} h\right)=t
$$

- In this special case, $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$.
- Moreover, $\mathcal{W}_{e, h} \cong$ the polynomial algebra generated by $s$ and $t$.


## Kostant's Theorem

- The study of $W$-algebra originated from Kostant's study on nilpotent orbits of $\mathfrak{g}$.


## Theorem (Kostant'78, Invent. Math.) <br> $\square$ Then $\mathcal{W}_{e, h} \cong Z(g)$.

- Principal means that there is only one Jordan block in e.
- The example we saw is principal $\left(e=e_{12} \in g_{2}^{2}\right)$


## Kostant's Theorem

- The study of $W$-algebra originated from Kostant's study on nilpotent orbits of $\mathfrak{g}$.


## Theorem (Kostant'78, Invent. Math.)

$\mathfrak{g}=\mathfrak{g l}_{M},(e, h)$ a good pair with e principal (also called regular) nilpotent. Then $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$.

- Principal means that there is only one Jordan block in e.
- The example we saw is principal $\left(e=e_{12} \in \mathrm{gh}_{2}\right)$


## Kostant's Theorem

- The study of $W$-algebra originated from Kostant's study on nilpotent orbits of $\mathfrak{g}$.


## Theorem (Kostant'78, Invent. Math.)

$\mathfrak{g}=\mathfrak{g l}_{M},(e, h)$ a good pair with e principal (also called regular) nilpotent. Then $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$.

- Principal means that there is only one Jordan block in $e$.
- The example we saw is principal $\left(e=e_{12} \in \mathfrak{g l}_{2}\right)$


## Kostant's Theorem

- The study of $W$-algebra originated from Kostant's study on nilpotent orbits of $\mathfrak{g}$.


## Theorem (Kostant'78, Invent. Math.)

$\mathfrak{g}=\mathfrak{g l}_{M},(e, h)$ a good pair with e principal (also called regular) nilpotent. Then $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$.

- Principal means that there is only one Jordan block in $e$.
- The example we saw is principal $\left(e=e_{12} \in \mathfrak{g l}_{2}\right)$


## The largest and the smallest one

- Recall $e=0 \stackrel{\text { Jordan type }}{\longleftrightarrow} e=\left(1^{M}\right)$ (one column Young diagram)

We have seen in this case the $W$-algebra is the largest one: $\mathcal{W}_{e, h}=U(\mathfrak{g})$.

- The other extreme case
$e:$ principal $\stackrel{\text { Jordan type }}{\longleftrightarrow} e=(M)$ (one row Young diagram)
Kostant's Theorem shows that $\mathcal{W}_{e, h} \simeq Z(g)$
- One can say in this case the $W$-algebra is the smallest one:


## Theorem (Brundan-Kteshchev'08, Mem. AMS)

The center of any $W$-algebra (associated to some nilpotent element in $\left.\mathfrak{g l}_{M}\right)$ is isomorphic to $Z\left(\mathfrak{g l}_{M}\right)$.

## The largest and the smallest one

- Recall $e=0 \stackrel{\text { Jordan type }}{\longleftrightarrow} e=\left(1^{M}\right)$ (one column Young diagram)

We have seen in this case the $W$-algebra is the largest one:

$$
\mathcal{W}_{e, h}=U(\mathfrak{g})
$$

- The other extreme case
$e:$ principal $\stackrel{\text { Jordan type }}{\longleftrightarrow} e=(M)$ (one row Young diagram)
Kostant's Theorem shows that $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$.
- One can say in this case the $W$-algebra is the smallest one


## Theorem (Brundan-Kleshchev'08, Mem. AMS)

The center of anv $W$-algebra (associated to some nilpotent element in $\left.\mathfrak{g l}_{M}\right)$ is isomorphic to $Z\left(g_{M}\right)$.

## The largest and the smallest one

- Recall $e=0 \stackrel{\text { Jordan type }}{\longleftrightarrow} e=\left(1^{M}\right)$ (one column Young diagram)

We have seen in this case the $W$-algebra is the largest one:

$$
\mathcal{W}_{e, h}=U(\mathfrak{g})
$$

- The other extreme case
$e:$ principal $\stackrel{\text { Jordan type }}{\longleftrightarrow} e=(M)$ (one row Young diagram)
Kostant's Theorem shows that $\mathcal{W}_{e, h} \cong Z(\mathfrak{g})$.
- One can say in this case the $W$-algebra is the smallest one:


## Theorem (Brundan-Kleshchev'08, Mem. AMS)

The center of any $W$-algebra (associated to some nilpotent element in $\left.\mathfrak{g l}_{M}\right)$ is isomorphic to $Z\left(\mathfrak{g l}_{M}\right)$.

## Pyramid

- Observing the definition, one sees that $W$-algebra is determined by the good pair $(e, h)$.
- Pyramid: a convenient diagram simultaneously recording $e$ and $h$.
- Let $\lambda$ be a partition of $M=$ a Young diagram with $M$ boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram $\lambda$ such that no bricks hanging in the air.
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair $(e, h)$ in $\mathfrak{g l}_{M}$ from a given pyramid $\pi$ consisting of $M$ boxes by an example.


## Pyramid

- Observing the definition, one sees that $W$-algebra is determined by the good pair $(e, h)$.
- Pyramid: a convenient diagram simultaneously recording $e$ and $h$.
- Let $\lambda$ be a partition of $M=$ a Young diagram with $M$ boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram $\lambda$ such that no bricks hanging in the air
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair $(e, h)$ in $\mathfrak{g l}_{M}$ from a given pyramid $\pi$ consisting of $M$ boxes by an example.


## Pyramid

- Observing the definition, one sees that $W$-algebra is determined by the good pair $(e, h)$.
- Pyramid: a convenient diagram simultaneously recording $e$ and $h$.
- Let $\lambda$ be a partition of $M=$ a Young diagram with $M$ boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram $\lambda$ such that no bricks hanging in the air.
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair $(e, h)$ in $\mathfrak{g l}_{M}$ from a given pyramid $\pi$ consisting of $M$ boxes by an example.


## Pyramid

- Observing the definition, one sees that $W$-algebra is determined by the good pair $(e, h)$.
- Pyramid: a convenient diagram simultaneously recording $e$ and $h$.
- Let $\lambda$ be a partition of $M=$ a Young diagram with $M$ boxes in French style (longest row in bottom, left justified).
- A pyramid is a diagram obtained by discretely shifting rows of the Young diagram $\lambda$ such that no bricks hanging in the air.
- Discretely means that the moving distance for each row is an integral multiple of the side length of a box.
- We explain how to obtain a good pair $(e, h)$ in $\mathfrak{g l}_{M}$ from a given pyramid $\pi$ consisting of $M$ boxes by an example.


## Example of Pyramid

- For example, $\lambda=(3,2,1)=\square \square \square^{\text {(tisis iseffraprymiti) }}$



## From $\pi$ to a good pair



- $e(\pi)=e_{3,5}+e_{1,4}+e_{4,6} \in \mathfrak{g l}_{6}$.
- $h(\pi)=-\operatorname{diag}(-2,0,0,0,2,2) \in \mathfrak{g l}_{6}$.
- Easily checked: $(e(\pi), h(\pi))$ forms a good pair of $\mathfrak{g l}_{6}$.


## Every good pair comes from a Pyramid

- $e \longrightarrow \pi \longrightarrow(e(\pi), h(\pi))$. (existence of good pair for any $e$ )
- In fact, the set of pyramids classifies all good pairs, due to the following theorem:


## Theorem (Elashvili-Kac'05)

Every good pair must come from a pyramid. That is, for any good pair $(e, h)$, there exists some pyramid $\pi$ such that $e=e(\pi)$ and $h=h(\pi)$. Note: this results holds for non-even good pair as well

- Given $\pi \longrightarrow \mathcal{W}_{\pi}:=\mathcal{W}_{e(\pi), h(\pi)}$.


## Every good pair comes from a Pyramid

- $e \longrightarrow \pi \longrightarrow(e(\pi), h(\pi))$. (existence of good pair for any $e$ )
- In fact, the set of pyramids classifies all good pairs, due to the following theorem:


## Theorem (Elashvili-Kac'05)

Every good pair must come from a pyramid. That is, for any good pair $(e, h)$, there exists some pyramid $\pi$ such that $e=e(\pi)$ and $h=h(\pi)$. Note: this results holds for non-even good pair as well


## Every good pair comes from a Pyramid

- $e \longrightarrow \pi \longrightarrow(e(\pi), h(\pi))$. (existence of good pair for any $e$ )
- In fact, the set of pyramids classifies all good pairs, due to the following theorem:


## Theorem (Elashvili-Kac'05)

Every good pair must come from a pyramid. That is, for any good pair $(e, h)$, there exists some pyramid $\pi$ such that $e=e(\pi)$ and $h=h(\pi)$. Note: this results holds for non-even good pair as well

- Given $\pi \longrightarrow \mathcal{W}_{\pi}:=\mathcal{W}_{e(\pi), h(\pi)}$.


## Pyramid and shift matrix

- Equivalently, one can express a pyramid $\pi$ by a shift matrix

$$
\sigma=\left(s_{i, j}\right)_{1 \leq i, j \leq m}
$$

$m=$ height of $\pi, s_{i j} \in \mathbb{Z}_{\geq} 0$ satisfy the following condition

$$
\begin{equation*}
s_{i, j}+s_{j, k}=s_{i, k}, \tag{1.1}
\end{equation*}
$$

whenever $|i-j|+|j-k|=|i-k|$, together with a natural number $\ell>s_{m, 1}+s_{1, m}$

- The condition (1.1) implies that the whole matrix $\sigma$ can be recovered if a row and a column is known.
- The process can be easily reverted, obtaining a unique $\pi$ from a given pair $\ell$ and $\sigma$


## Pyramid and shift matrix

- Equivalently, one can express a pyramid $\pi$ by a shift matrix

$$
\sigma=\left(s_{i, j}\right)_{1 \leq i, j \leq m}
$$

$m=$ height of $\pi, s_{i j} \in \mathbb{Z}_{\geq} 0$ satisfy the following condition

$$
\begin{equation*}
s_{i, j}+s_{j, k}=s_{i, k}, \tag{1.1}
\end{equation*}
$$

whenever $|i-j|+|j-k|=|i-k|$, together with a natural number $\ell>s_{m, 1}+s_{1, m}$

- The condition (1.1) implies that the whole matrix $\sigma$ can be recovered if a row and a column is known.
- The process can be easily reverted, obtaining a unique $\pi$ from a given pair $\ell$ and $\sigma$


## Pyramid and shift matrix

- Equivalently, one can express a pyramid $\pi$ by a shift matrix

$$
\sigma=\left(s_{i, j}\right)_{1 \leq i, j \leq m}
$$

$m=$ height of $\pi, s_{i j} \in \mathbb{Z}_{\geq} 0$ satisfy the following condition

$$
\begin{equation*}
s_{i, j}+s_{j, k}=s_{i, k}, \tag{1.1}
\end{equation*}
$$

whenever $|i-j|+|j-k|=|i-k|$, together with a natural number $\ell>s_{m, 1}+s_{1, m}$

- The condition (1.1) implies that the whole matrix $\sigma$ can be recovered if a row and a column is known.
- The process can be easily reverted, obtaining a unique $\pi$ from a given pair $\ell$ and $\sigma$.


## Example

$$
\ell=4, \sigma=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
2 & 1 & 0
\end{array}\right] \quad \longrightarrow \quad \pi=\begin{aligned}
& X \times \square \\
& \times \square \\
& \square \\
& \square \\
&
\end{aligned}
$$

- $\ell=4, \sigma$ is $3 \times 3 \longrightarrow \mathrm{~A}$ rectangle $\Pi$ of base 4 height 3.
- Last row of $\sigma \longrightarrow$ Boxes to be removed in the left hand side of П.
- Last column of $\sigma \longrightarrow$ Boxes to be removed in the right hand side of $\Pi$.
- Easy to construct the inverse map so we have a bijection.


## Example

$$
\ell=4, \sigma=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
2 & 1 & 0
\end{array}\right] \quad \longrightarrow \quad \pi=\begin{aligned}
& X \\
& X \\
& X \\
& \hline
\end{aligned}
$$

- $\ell=4, \sigma$ is $3 \times 3 \longrightarrow$ A rectangle $\Pi$ of base 4 height 3.
- Last row of $\sigma \longrightarrow$ Boxes to be removed in the left hand side of $\Pi$.
- Last column of $\sigma \longrightarrow$ Boxes to be removed in the right hand side of $\Pi$.
- Easy to construct the inverse map so we have a bijection.


## Example

- $\ell=4, \sigma$ is $3 \times 3 \longrightarrow$ A rectangle $\Pi$ of base 4 height 3.
- Last row of $\sigma \longrightarrow$ Boxes to be removed in the left hand side of $\Pi$.
- Last column of $\sigma \longrightarrow$ Boxes to be removed in the right hand side of $П$.
- Easy to construct the inverse map so we have a bijection.


## Summary about $\pi \longleftrightarrow(\sigma, \ell)$

Width of $\pi \longleftrightarrow \ell$
Height of $\pi \longleftrightarrow$ Size of $\sigma$
Shape of $\pi \longleftrightarrow$ Entries of $\sigma$

Good pair $(e, h) \stackrel{1: 1}{\longleftrightarrow}$ Pyramid $\pi \stackrel{1: 1}{\longleftrightarrow}$ A matrix and integer $(\sigma, \ell)$

## Outline

(1) Finite $W$-algebra of $\mathfrak{g l}_{M}$
(2) Yangian associated to $\mathfrak{g l}_{m}$

## (3) Presentation of $W$-algebra in terms of Yangian

4 Super version of the story

## Definition of $Y_{m}$

The Yangian associated to $\mathfrak{g l}_{m}$, denoted by $Y_{m}$, can be defined by several different but equivalent presentations. The first one we mention is

## Definition (RTT presentation)

$Y_{m}$ : an associative algebra with generators

$$
\left\{t_{i j}^{(r)} \mid 1 \leq i, j \leq m ; r \geq 0\right\}
$$

defining relations

$$
\left[t_{i j}^{(r)}, t_{h k}^{(s)}\right]=\sum_{g=0}^{(0)}:=\delta_{i j}, ~\left(t_{h j}^{(g)} t_{i k}^{(r+s-1-g)}-t_{h j}^{(r+s-1-g)} t_{i k}^{(g)}\right), ~
$$

where the bracket stands for the commutator.

## Parabolic presentation for $Y_{m}$

For our purpose, we need a different presentation for $Y_{m}$ due to Brundan-Kleshchev.

## Theorem (BK'05, CMP)

Let $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{z}\right)$ be a composition of $m . Y_{m}$ is isomorphic to the algebra generated by the following symbols

$$
\begin{aligned}
& \left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z, 1 \leq i, j \leq \mu_{a}, r \in \mathbb{Z}_{\geq 0}\right\}, \\
& \left\{E_{b ; h, k}^{(s)} \mid 1 \leq b<z, 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1}, s \in \mathbb{Z}_{\geq 1}\right\}, \\
& \left\{F_{b ; k, h}^{(s)} \mid 1 \leq b<z, 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1}, s \in \mathbb{Z}_{\geq 1}\right\} .
\end{aligned}
$$

subjected to certain relations.

- These symbols are called the parabolic generators of $Y_{m}$, depending on $\mu$ by definition.


## Parabolic presentation for $Y_{m}$

For our purpose, we need a different presentation for $Y_{m}$ due to Brundan-Kleshchev.

## Theorem (BK'05, CMP)

Let $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{z}\right)$ be a composition of $m . Y_{m}$ is isomorphic to the algebra generated by the following symbols

$$
\begin{aligned}
& \left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z, 1 \leq i, j \leq \mu_{a}, r \in \mathbb{Z}_{\geq 0}\right\}, \\
& \left\{E_{b ; h, k}^{(s)} \mid 1 \leq b<z, 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1}, s \in \mathbb{Z}_{\geq 1}\right\}, \\
& \left\{F_{b ; k, h}^{(s)} \mid 1 \leq b<z, 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1}, s \in \mathbb{Z}_{\geq 1}\right\} .
\end{aligned}
$$

subjected to certain relations.

- These symbols are called the parabolic generators of $Y_{m}$, depending on $\mu$ by definition.


## A few words about the presentation

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take $\mu=(m)$, we recover the RTT presentation.
- Take $\mu=\left(1^{m}\right)$, we recover an analogue of Drinfeld's presentation for $Y\left(\mathfrak{s l}_{m}\right)$.
- It is also proved in $\mathrm{BK}^{\prime} 05$ that $Y_{m}$ is independent of the choice of $\mu$ up to isomorphism. We write $Y_{\mu}:=Y_{m}$ to emphasize $\mu$ when necessary.


## A few words about the presentation

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take $\mu=(m)$, we recover the RTT presentation.
- Take $\mu=\left(1^{m}\right)$, we recover an analogue of Drinfeld's presentation for $Y\left(\mathfrak{s l}_{m}\right)$.
- It is also proved in BK'05 that $Y_{m}$ is independent of the choice of $\mu$ up to isomorphism. We write $Y_{\mu}:=Y_{m}$ to emphasize $\mu$ when necessary.


## A few words about the presentation

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take $\mu=(m)$, we recover the RTT presentation.
- Take $\mu=\left(1^{m}\right)$, we recover an analogue of Drinfeld's presentation for $Y\left(\mathfrak{s l}_{m}\right)$.
- It is also proved in BK'05 that $Y_{m}$ is independent of the choice of $\mu$ up to isomorphism. We write $Y_{\mu}:=Y_{m}$ to emphasize $\mu$ when necessary.


## A few words about the presentation

- The Yangians (associated to reductive or semisimple Lie algebras) are firstly defined by Drinfeld around the 80's, in honor of C.N. Yang. (Yang-Baxtor equation)
- Take $\mu=(m)$, we recover the RTT presentation.
- Take $\mu=\left(1^{m}\right)$, we recover an analogue of Drinfeld's presentation for $Y\left(\mathfrak{s l}_{m}\right)$.
- It is also proved in BK'05 that $Y_{m}$ is independent of the choice of $\mu$ up to isomorphism. We write $Y_{\mu}:=Y_{m}$ to emphasize $\mu$ when necessary.


## Outline

## (1) Finite $W$-algebra of $\mathfrak{g l}_{M}$

(2) Yangian associated to $\mathfrak{g l}_{m}$
(3) Presentation of $W$-algebra in terms of Yangian

4 Super version of the story

## W-algebra and Yangian

- The connection between $W$-algebra and Yangian was firstly observed in [Ragoucy-Sorba'99, CMP] for special cases (rectangular pyramid). The general case (arbitrary e) is constructed by [BK'06].



## W-algebra and Yangian

- The connection between $W$-algebra and Yangian was firstly observed in [Ragoucy-Sorba'99, CMP] for special cases (rectangular pyramid). The general case (arbitrary e) is constructed by [BK'06].
- To explain the result in [BK'06], we need to define the shifted Yangian, which is a subalgebra of $Y_{m}$.


## Shifted Yangian

- $(e, h) \longleftrightarrow \pi \longleftrightarrow(\sigma, \ell)$.
- Say $\sigma=\left(s_{i, j}\right)$ is of size $m$.
- Take a composition $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ admissible to $\sigma$, which means that

$$
s_{\mu_{1}+\mu_{2}+\cdots+\mu_{a-1}+i, \mu_{1}+\mu_{2}+\cdots+\mu_{a-1}+j}=0
$$

for all $1 \leq a \leq z, 1 \leq i, j \leq \mu_{a}$

- "admissible" means that square matrices of size $\mu_{1}, \mu_{2}, \ldots$ in the diagonal blocks of $\sigma$ are all zero matrices.


## Shifted Yangian

- $(e, h) \longleftrightarrow \pi \longleftrightarrow(\sigma, \ell)$.
- Say $\sigma=\left(s_{i, j}\right)$ is of size $m$.
- Take a composition $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ admissible to $\sigma$, which means that
$s_{\mu_{1}+\mu_{2}+\cdots+\mu_{a-1}+i, \mu_{1}+\mu_{2}+\cdots+\mu_{a-1}+j}=0$
for all $1 \leq a \leq z, 1 \leq i, j \leq \mu_{a}$
- "admissible" means that square matrices of size $\mu_{1}, \mu_{2}, \ldots$ in the diagonal blocks of $\sigma$ are all zero matrices.


## Shifted Yangian

- $(e, h) \longleftrightarrow \pi \longleftrightarrow(\sigma, \ell)$.
- Say $\sigma=\left(s_{i, j}\right)$ is of size $m$.
- Take a composition $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ admissible to $\sigma$, which means that

$$
s_{\mu_{1}+\mu_{2}+\cdots+\mu_{\mathrm{a}-1}+i, \mu_{1}+\mu_{2}+\cdots+\mu_{\mathrm{a}-1}+j}=0
$$

for all $1 \leq a \leq z, 1 \leq i, j \leq \mu_{a}$

- "admissible" means that square matrices of size $\mu_{1}, \mu_{2}, \ldots$ in the diagonal blocks of $\sigma$ are all zero matrices.


## Shifted Yangian

- $(e, h) \longleftrightarrow \pi \longleftrightarrow(\sigma, \ell)$.
- Say $\sigma=\left(s_{i, j}\right)$ is of size $m$.
- Take a composition $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ admissible to $\sigma$, which means that

$$
s_{\mu_{1}+\mu_{2}+\cdots+\mu_{\mathrm{a}-1}+i, \mu_{1}+\mu_{2}+\cdots+\mu_{\mathrm{a}-1}+j}=0
$$

for all $1 \leq a \leq z, 1 \leq i, j \leq \mu_{a}$

- "admissible" means that square matrices of size $\mu_{1}, \mu_{2}, \ldots$ in the diagonal blocks of $\sigma$ are all zero matrices.


## Shifted Yangian

For example, the following matrix is a shift matrix:

$$
\sigma=\left(\begin{array}{llllll}
0 & 1 & 2 & 2 & 3 & 3 \\
0 & 0 & 1 & 1 & 2 & 2 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
4 & 4 & 3 & 3 & 0 & 0 \\
4 & 4 & 3 & 3 & 0 & 0
\end{array}\right)
$$

and $\mu=(1,1,2,2)$ is minimal (the unique one with shortest length) admissible to $\sigma$.
$(1,1,2,1,1),(1,1,1,1,1,1)$ are also admissible.

## Shifted Yangian

- According to $\sigma$ and admissible $\mu$, we pick a subset of the parabolic generators we saw in the parabolic presentation of $Y_{\mu}$.
- Let $\mathcal{P}_{\mu, \sigma}$ be the union of following subsets in $Y_{\mu}$ :

where $s_{a, b}^{\mu}$ means the entry in the $(a, b)$-th block of $\sigma$. (admissible condition $\Rightarrow$ all entries in the $(a, b)$-th block) are the same.


## Shifted Yangian

- According to $\sigma$ and admissible $\mu$, we pick a subset of the parabolic generators we saw in the parabolic presentation of $Y_{\mu}$.
- Let $\mathcal{P}_{\mu, \sigma}$ be the union of following subsets in $Y_{\mu}$ :

$$
\begin{aligned}
& \left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z ; 1 \leq i, j \leq \mu_{a} ; r \geq 0\right\} \\
& \left\{E_{b ; h, k}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b, b+1}^{\mu}\right\} \\
& \left\{F_{b ; k, h}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b+1, b}^{\mu}\right\}
\end{aligned}
$$

where $s_{a, b}^{\mu}$ means the entry in the $(a, b)$-th block of $\sigma$. (admissible condition $\Rightarrow$ all entries in the ( $a, b$ )-th block) are the same.

## Shifted Yangian

For example, take $\mu=(1,1,2)$ which is admissible to

$$
\sigma=\left(\begin{array}{llll}
0 & 1 & 3 & 3 \\
0 & 0 & 2 & 2 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Then $\mathcal{P}_{\mu, \sigma}$ is the union

$$
\begin{gathered}
\left\{D_{1}^{(r)}, D_{2}^{(r)}, D_{3 ; i, j}^{(r)} \mid 1 \leq i, j \leq 2, r \geq 0\right\} \quad \text { (also those with } \prime \prime s \text { ) } \\
\left\{E_{1}^{(s)} \mid s \geq 2\right\}, \quad\left\{E_{2 ; 1,1}^{(s)}, E_{2 ; 1,2}^{(s)} \mid s \geq 3\right\} \\
\left\{F_{1}^{(s)} \mid s \geq 1\right\}, \quad\left\{F_{2 ; 1,1}^{(s)}, F_{2 ; 2,1}^{(s)} \mid s \geq 2\right\}
\end{gathered}
$$

## Shifted Yangian

- Define the shifted Yangian $Y_{\mu}(\sigma)$ to be the subalgebra of $Y_{\mu}$ generated by $\mathcal{P}_{\mu, \sigma}$.
- Not only the subalgebra, a presentation of $Y_{\mu}(\sigma)$ in terms of $\mathcal{P}_{\mu, \sigma}$ is also required to establish the connection to $W$-algebra, and it is also obtained in [ $\mathrm{BK}^{\prime} 06$ ].


## Shifted Yangian

- Define the shifted Yangian $Y_{\mu}(\sigma)$ to be the subalgebra of $Y_{\mu}$ generated by $\mathcal{P}_{\mu, \sigma}$.
- Not only the subalgebra, a presentation of $Y_{\mu}(\sigma)$ in terms of $\mathcal{P}_{\mu, \sigma}$ is also required to establish the connection to $W$-algebra, and it is also obtained in [BK'06].


## Shifted Yangian

## Theorem (BK'06, Adv. Math.)

(1) The shifted Yangian $Y_{\mu}(\sigma)$ is the abstract algebra generated by symbols in $\mathcal{P}_{\mu, \sigma}$ subjected to following relations.
(2) One can identify $Y_{\mu}(\sigma)$ as a subalgebra of $Y_{\mu}$ by identifying the symbols in $\mathcal{P}_{\mu, \sigma}$ to corresponding elements in $Y_{\mu}=Y_{m}$ sharing the same name.
(3) $Y_{\mu}(\sigma)=Y_{\nu}(\sigma)$ for any $\mu, \nu$ admissible to $\sigma$. (independent of the choices of the admissible shape)

## Defining relations for shifted Yangian

$$
\begin{aligned}
D_{a ; i, j}^{(0)} & =\delta_{i j} \\
\sum_{t=0}^{r} D_{a ; i, p}^{(t)} D_{a ; p, j}^{\prime(r-t)} & =\delta_{r 0} \delta_{i j} \\
{\left[D_{a ; i, j}^{(r)}, D_{b ; h, k}^{(s)}\right] } & =\delta_{a, b} \sum_{t=0}^{\min (r, s)-1}\left(D_{a ; h, j}^{(t)} D_{a ; i, k}^{(r+s-1-t)}-D_{a ; h, j}^{(r+s-1-t)} D_{a ; i, k}^{(t)}\right),
\end{aligned}
$$

## Relations(continued)

$$
\begin{aligned}
& {\left[D_{a ; i, j}^{(r)}, E_{b ; i, k}^{(s)}\right]=\delta_{a, b} \delta_{h j} \sum_{t=0}^{r-1} D_{a i, i, p}^{(t)} E_{b ; p, k}^{(r+s-1-t)}} \\
& -\delta_{a, b+1} \sum_{t=0}^{r-1} D_{a ; i, k}^{(t)} E_{b ; h, j}^{(r+s-1-t)}, \\
& {\left[D_{a ; i, j}^{(r)}, F_{b ; k, h}^{(s)}\right]=\delta_{a, b} \sum_{t=0}^{r-1} F_{b ; k, p}^{(r+s-1-t)} D_{a ; j, j}^{(t)}} \\
& +\delta_{a, b+1} \sum_{t=0}^{r-1} F_{b ; i, h}^{(r+s-1-t)} D_{a ; k, j}^{(t)}
\end{aligned}
$$

## Relations(continued)

$$
\begin{aligned}
& {\left[E_{a ; i, j}^{(r)}, F_{b ; k, h}^{(s)}\right]=\delta_{a, b}(-1) \sum_{t=0}^{r+s-1} D_{a ; i, h}^{(r+s-1-t)} D_{a+1 ; k, j}^{(t)},} \\
& {\left[E_{a ; i, j}^{(r)}, E_{a ; h, k}^{(s)}\right]=\sum_{t=s_{a, a+1}^{\mu}+1}^{s-1} E_{a ; i, k}^{(r+s-1-t)} E_{a ; h, j}^{(t)}-\sum_{t=s_{a, a+1}^{\mu}+1}^{r-1} E_{a ; i, k}^{(r+s-1-t)} E_{a ; h, j}^{(t)},} \\
& {\left[F_{a ; i, j}^{(r)}, F_{a ; h, k}^{(s)}\right]=\sum_{t=s_{a+1, a}^{\mu}+1}^{r-1} F_{a ; i, k}^{(r+s-1-t)} F_{a ; h, j}^{(t)}-\sum_{t=s_{a+1, a}^{\mu}+1}^{s-1} F_{a ; i, k}^{(r+s-1-t)} F_{a ; h, j}^{(t)},}
\end{aligned}
$$

## Relations(continued)

$$
\begin{aligned}
& {\left[E_{a ; i j}^{(r+1)}, E_{a+1 ; i, k}^{(s)}\right]-\left[E_{a ; i j}^{(r)}, E_{a+1 ; h, k}^{(s+1)}\right]=\delta_{h, j} E_{a ; ; q}^{(r)} E_{a+1 ; q, k}^{(s)},} \\
& {\left[F_{a ; i j}^{(r+1)}, F_{a+1 ; i, k}^{(s)}\right]-\left[F_{a ; i, j}^{(r)}, F_{a+1 ; h ; k}^{(s+1)}\right]=(-1) \delta_{i, k} F_{a+1 ; i ; q}^{(s)} F_{a ; q ; j}^{(r)},}
\end{aligned}
$$

$\left[E_{a ; i, j}^{(r)}, E_{b ; h, k}^{(s)}\right]=0 \quad$ if $|b-a|>1 \quad$ or $\quad$ if $b=a+1$ and $h \neq j$,
$\left[F_{a ; i, j}^{(r)}, F_{b ; h, k}^{(s)}\right]=0$
if $|b-a|>1$ or if $b=a+1$ and $i \neq k$,

## Relations(continued)

$$
\begin{aligned}
& {\left[E_{a ; i j}^{(r)},\left[E_{a ; h, k}^{(s)}, E_{b, f, g}^{(t)}\right]\right]+\left[E_{a ; i, j}^{(s)},\left[E_{a, h, k}^{(r)}, E_{b ; f, g}^{(t)}\right]=0 \text { if }|a-b| \geq 1,\right.} \\
& {\left[F_{a ; i, j}^{(r)},\left[F_{a ; h, k}^{(s)}, F_{b ; f, g}^{(t)}\right]\right]+\left[F_{a ; i j}^{(s)},\left[F_{a ; ;, k, k}^{(r)}, F_{b, f, g}^{(t)}\right]\right]=0 \text { if }|a-b| \geq 1 .}
\end{aligned}
$$

In the relations, $p$ and $q$ are taken summed, and the indices $r, s, t$ run over all integers such that the corresponding elements make sense in $Y_{\mu}(\sigma)$.

## Remark

Setting all $s_{i, j}=0$ (i.e., $\sigma$ is the zero matrix), we get the defining relations of the whole Yangian $Y_{\mu}$ given in $B K^{\prime} 05$.

## Truncation

- Recall that $\pi \leftrightarrow(\sigma, \ell)$. We have used $\sigma$ to define a subalgebra $Y_{\mu}(\sigma)$. Now it's time to get $\ell$ involved.
- Denote by $I_{\ell}$ the 2-sided ideal of $Y_{\mu}(\sigma)$ generated by

$$
\left\{D_{1 ; i, j}^{(r)} \mid 1 \leq i, j \leq \mu_{1}, r \geq p_{1}\right\},
$$

where $p_{1}$ is the number of boxes in the top row of $\pi$, which is determined by $\sigma$ and $\ell$.

- $Y_{\mu}^{\ell}(\sigma):=Y_{\mu}(\sigma) / I_{\ell}$, called the shifted Yangian of level $\ell$.


## Truncation

- Recall that $\pi \leftrightarrow(\sigma, \ell)$. We have used $\sigma$ to define a subalgebra $Y_{\mu}(\sigma)$. Now it's time to get $\ell$ involved.
- Denote by $I_{\ell}$ the 2-sided ideal of $Y_{\mu}(\sigma)$ generated by

$$
\left\{D_{1 ; i, j}^{(r)} \mid 1 \leq i, j \leq \mu_{1}, r \geq p_{1}\right\}
$$

where $p_{1}$ is the number of boxes in the top row of $\pi$, which is determined by $\sigma$ and $\ell$.

- $Y_{\mu}^{\ell}(\sigma):=Y_{\mu}(\sigma) / I_{\ell}$, called the shifted Yangian of level


## Truncation

- Recall that $\pi \leftrightarrow(\sigma, \ell)$. We have used $\sigma$ to define a subalgebra $Y_{\mu}(\sigma)$. Now it's time to get $\ell$ involved.
- Denote by $I_{\ell}$ the 2-sided ideal of $Y_{\mu}(\sigma)$ generated by

$$
\left\{D_{1 ; i, j}^{(r)} \mid 1 \leq i, j \leq \mu_{1}, r \geq p_{1}\right\}
$$

where $p_{1}$ is the number of boxes in the top row of $\pi$, which is determined by $\sigma$ and $\ell$.

- $Y_{\mu}^{\ell}(\sigma):=Y_{\mu}(\sigma) / I_{\ell}$, called the shifted Yangian of level $\ell$.


## Main result of BK and consequences

## Theorem (BK'06, Adv. Math.)

There exists an algebra isomorphism between $Y_{\mu}^{\ell}(\sigma)$ and $\mathcal{W}_{\pi}$.

- One may study representation theory of $W$-algebra via tools from representation theory of Yangian, which people understand better (methods developed by Drinfeld, Molev, Nazarov, Olshanski, Tarasov, ...etc). [BK'08, Mem. AMS.][BK'08, Sel. Math.]
- Triggered the study of shifted Yangian in geometric representation theory (a series of papers about Coulomb branches by different groups of people: Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weeks, Yacobi, etc.)


## Main result of BK and consequences

## Theorem (BK'06, Adv. Math.)

There exists an algebra isomorphism between $Y_{\mu}^{\ell}(\sigma)$ and $\mathcal{W}_{\pi}$.

- One may study representation theory of $W$-algebra via tools from representation theory of Yangian, which people understand better (methods developed by Drinfeld, Molev, Nazarov, Olshanski, Tarasov,...etc). [BK'08, Mem. AMS.][BK'08, Sel. Math.]
- Triggered the study of shifted Yangian in geometric representation theory (a series of papers about Coulomb branches by different groups of people: Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weeks, Yacobi, etc.)


## Main result of BK and consequences

## Theorem (BK'06, Adv. Math.)

There exists an algebra isomorphism between $Y_{\mu}^{\ell}(\sigma)$ and $\mathcal{W}_{\pi}$.

- One may study representation theory of $W$-algebra via tools from representation theory of Yangian, which people understand better (methods developed by Drinfeld, Molev, Nazarov, Olshanski, Tarasov,...etc). [BK'08, Mem. AMS.][BK'08, Sel. Math.]
- Triggered the study of shifted Yangian in geometric representation theory (a series of papers about Coulomb branches by different groups of people: Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weeks, Yacobi, etc.).


## Outline

## (1) Finite $W$-algebra of $\mathfrak{g l}_{M}$

(2) Yangian associated to $\mathfrak{g l}_{m}$
(3) Presentation of $W$-algebra in terms of Yangian
(4) Super version of the story

## W-superalgebra

- One defines (finite) $W$-superalgebra from a good pair $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ in a very similar way to the $\mathfrak{g l}_{M}$ case with some modifications:
(1) Choose $e \in\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}}$ to be even nilpotent (assume this from now on)
© Replace tr by str when defining $\chi: g \rightarrow \mathbb{C}, \chi(y)=\operatorname{str}(y \cdot e)$.
(3) Same definition of $\mathfrak{m}, \mathfrak{p}$ and $\chi$-twisted action of $\mathfrak{m}$ on $\mathfrak{p}$, and collect the annihilated elements

$$
\mathcal{W}_{e, h}:=U(\mathfrak{p})^{a d \mathfrak{m}}=\left\{y \in U(\mathfrak{p}) \mid(a-\chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m}\right\}
$$

- One can also describe a good pair $(e, h)$ by a pyramid, with some modification.


## W-superalgebra

- One defines (finite) $W$-superalgebra from a good pair $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ in a very similar way to the $\mathfrak{g l}_{M}$ case with some modifications:
(1) Choose $e \in\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}}$ to be even nilpotent (assume this from now on)
(2) Replace tr by str when defining $\chi: \mathfrak{g} \rightarrow \mathbb{C}, \chi(y)=\operatorname{str}(y \cdot e)$.
(3) Same definition of $\mathfrak{m}, \mathfrak{p}$ and $\chi$-twisted action of $\mathfrak{m}$ on $\mathfrak{p}$, and collect the annihilated elements

$$
\mathcal{W}_{e, h}:=U(\mathfrak{p})^{a d \mathfrak{m}}=\left\{y \in U(\mathfrak{p}) \mid(a-\chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m}\right\}
$$

- One can also describe a good pair $(e, h)$ by a pyramid, with some modification.


## W-superalgebra

- One defines (finite) $W$-superalgebra from a good pair $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ in a very similar way to the $\mathfrak{g l}_{M}$ case with some modifications:
(1) Choose $e \in\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}}$ to be even nilpotent (assume this from now on)
(2) Replace tr by str when defining $\chi: \mathfrak{g} \rightarrow \mathbb{C}, \chi(y)=\operatorname{str}(y \cdot e)$.
(3) Same definition of $m, p$ and $\chi$-twisted action of $m$ on $p$, and collect the annihilated elements

$$
\mathcal{W}_{e, h}:=U(p)^{a d m}=\left\{y \in U(p) \mid(a-\chi(a)) y \in I_{x}, \forall a \in m\right\}
$$

- One can also describe a good pair $(e, h)$ by a pyramid, with some modification.


## W-superalgebra

- One defines (finite) $W$-superalgebra from a good pair $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ in a very similar way to the $\mathfrak{g l}_{M}$ case with some modifications:
(1) Choose $e \in\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}}$ to be even nilpotent (assume this from now on)
(2) Replace tr by str when defining $\chi: \mathfrak{g} \rightarrow \mathbb{C}, \chi(y)=\operatorname{str}(y \cdot e)$.
(3) Same definition of $\mathfrak{m}, \mathfrak{p}$ and $\chi$-twisted action of $\mathfrak{m}$ on $\mathfrak{p}$, and collect the annihilated elements

$$
\mathcal{W}_{e, h}:=U(\mathfrak{p})^{a d \mathfrak{m}}=\left\{y \in U(\mathfrak{p}) \mid(a-\chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m}\right\}
$$

- One can also describe a good pair $(e, h)$ by a pyramid, with some modification.


## W-superalgebra

- One defines (finite) $W$-superalgebra from a good pair $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ in a very similar way to the $\mathfrak{g l}_{M}$ case with some modifications:
(1) Choose $e \in\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}}$ to be even nilpotent (assume this from now on)
(2) Replace tr by str when defining $\chi: \mathfrak{g} \rightarrow \mathbb{C}, \chi(y)=\operatorname{str}(y \cdot e)$.
(3) Same definition of $\mathfrak{m}, \mathfrak{p}$ and $\chi$-twisted action of $\mathfrak{m}$ on $\mathfrak{p}$, and collect the annihilated elements

$$
\mathcal{W}_{e, h}:=U(\mathfrak{p})^{a d \mathfrak{m}}=\left\{y \in U(\mathfrak{p}) \mid(a-\chi(a)) y \in I_{\chi}, \forall a \in \mathfrak{m}\right\}
$$

- One can also describe a good pair $(e, h)$ by a pyramid, with some modification.


## W-superalgebra

- The Jordan type of $e$ is now described by a pair of partitions (of $M$ and $N$ respectively)

$$
e \in \mathfrak{g}_{\overline{0}} \Rightarrow e=e_{M} \oplus e_{N} \quad\left(\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}} \cong \mathfrak{g l}_{M} \oplus \mathfrak{g l}_{N}\right)
$$

- Stack the Young diagrams of $e_{M}$ and $e_{N}$ together, rearranging the rows if necessary, to form a new Young diagram.
- But we need to keep track of the origin of each row (from $e_{M}$ or $e_{N}$ ) by coloring the bricks, and then discretely shift the rows to form a pyramid which consists of two different colors of boxes.


## W-superalgebra

- The Jordan type of $e$ is now described by a pair of partitions (of $M$ and $N$ respectively)

$$
e \in \mathfrak{g}_{\overline{0}} \Rightarrow e=e_{M} \oplus e_{N} \quad\left(\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}} \cong \mathfrak{g l}_{M} \oplus \mathfrak{g l}_{N}\right)
$$

- Stack the Young diagrams of $e_{M}$ and $e_{N}$ together, rearranging the rows if necessary, to form a new Young diagram.
- But we need to keep track of the origin of each row (from $e_{M}$ or $e_{N}$ ) by coloring the bricks, and then discretely shift the rows to form a pyramid which consists of two different colors of boxes.


## W-superalgebra

- The Jordan type of $e$ is now described by a pair of partitions (of $M$ and $N$ respectively)

$$
e \in \mathfrak{g}_{\overline{0}} \Rightarrow e=e_{M} \oplus e_{N} \quad\left(\left(\mathfrak{g l}_{M \mid N}\right)_{\overline{0}} \cong \mathfrak{g l}_{M} \oplus \mathfrak{g l}_{N}\right)
$$

- Stack the Young diagrams of $e_{M}$ and $e_{N}$ together, rearranging the rows if necessary, to form a new Young diagram.
- But we need to keep track of the origin of each row (from $e_{M}$ or $e_{N}$ ) by coloring the bricks, and then discretely shift the rows to form a pyramid which consists of two different colors of boxes.


## Example

The following is a pyramid representing a good pair $(e, h)$ in $\mathfrak{g l}_{9 \mid 8}$ :


- $e=e^{+}+e^{-}$, where $e^{+} \in \mathfrak{g l}_{9 \mid 0}$ of Jordan type $(7,2)$ and $e^{-} \in \mathfrak{g l}_{0 \mid 8}$ of Jordan type (4,2,2).
- $e \in g_{0} \Rightarrow$ every bricks in the same row have the same color ( + or - ).
- The $\pm$-labeling can be recorded as --+-+ from top to bottom, or $11010(+\leftrightarrow 0,-\leftrightarrow 1)$. This is called a 01-sequence.


## Example

The following is a pyramid representing a good pair $(e, h)$ in $\mathfrak{g l}_{9 \mid 8}$ :


- $e=e^{+}+e^{-}$, where $e^{+} \in \mathfrak{g l}_{9 \mid 0}$ of Jordan type $(7,2)$ and $e^{-} \in \mathfrak{g l}_{0 \mid 8}$ of Jordan type (4,2,2).
- $e \in \mathfrak{g}_{0} \Rightarrow$ every bricks in the same row have the same color ( + or - ).
- The $\pm$-labeling can be recorded as --+-+ from top to bottom, or $11010(+\leftrightarrow 0,-\leftrightarrow 1)$. This is called a 01-sequence.


## Example

The following is a pyramid representing a good pair $(e, h)$ in $\mathfrak{g l}_{9 \mid 8}$ :


- $e=e^{+}+e^{-}$, where $e^{+} \in \mathfrak{g l}_{9 \mid 0}$ of Jordan type $(7,2)$ and $e^{-} \in \mathfrak{g l}_{0 \mid 8}$ of Jordan type (4,2,2).
- $e \in \mathfrak{g}_{0} \Rightarrow$ every bricks in the same row have the same color ( + or - ).
- The $\pm$-labeling can be recorded as --+-+ from top to bottom, or $11010(+\leftrightarrow 0,-\leftrightarrow 1)$. This is called a 01-sequence.


## Example

The following is a pyramid representing a good pair $(e, h)$ in $\mathfrak{g l}_{9 \mid 8}$ :


- $e=e^{+}+e^{-}$, where $e^{+} \in \mathfrak{g l}_{9 \mid 0}$ of Jordan type $(7,2)$ and $e^{-} \in \mathfrak{g l}_{0 \mid 8}$ of Jordan type (4,2,2).
- $e \in \mathfrak{g}_{0} \Rightarrow$ every bricks in the same row have the same color (+ or - ).
- The $\pm$-labeling can be recorded as --+-+ from top to bottom, or $11010(+\leftrightarrow 0,-\leftrightarrow 1)$. This is called a 01-sequence.


## Pyramids and 01-sequence

- Labeling + boxes with $1, \cdots, M$ and - boxes with $\overline{1}, \cdots, \bar{N}$, one can explicitly write down matrices $e_{\pi}$ and $h_{\pi}$ in $\mathfrak{g l}_{M \mid N}$ exactly the same way as before, and they do form a good pair.


## Theorem (Hoyt' ${ }^{12}$ )

Good pairs $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ are classified by colored pyramids: pyramids with two different colors ( + and - ) of bricks.

- It makes sense to write $\mathcal{W}_{\pi}=\mathcal{W}_{\left(e_{\pi}, h_{\pi}\right)}$ and every $W$-superalgebra must be of this form due the the theorem above.
- The pyramid $\pi$ now can be uniquely recorded by a triple $(\sigma, \ell, b)$ where $\sigma$ is a shift matrix of size $m+n, \ell$ is the number of boxes in the bottom row of $\pi$, and $\mathfrak{b}$ is the 01 -sequence recording the color of


## Pyramids and 01-sequence

- Labeling + boxes with $1, \cdots, M$ and - boxes with $\overline{1}, \cdots, \bar{N}$, one can explicitly write down matrices $e_{\pi}$ and $h_{\pi}$ in $\mathfrak{g l}_{M \mid N}$ exactly the same way as before, and they do form a good pair.


## Theorem (Hoyt'12)

Good pairs $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ are classified by colored pyramids: pyramids with two different colors (+ and -) of bricks.

- It makes sense to write $\mathcal{W}_{\pi}=\mathcal{W}_{\left(e_{\pi}, h_{\pi}\right)}$ and every $W$-superalgebra must be of this form due the the theorem above.
- The pyramid $\pi$ now can be uniquely recorded by a triple $(\sigma, \ell, b)$ where $\sigma$ is a shift matrix of size $m+n, \ell$ is the number of boxes in the bottom row of $\pi$, and $\mathfrak{b}$ is the 01-sequence recording the color of


## Pyramids and 01-sequence

- Labeling + boxes with $1, \cdots, M$ and - boxes with $\overline{1}, \cdots, \bar{N}$, one can explicitly write down matrices $e_{\pi}$ and $h_{\pi}$ in $\mathfrak{g l}_{M \mid N}$ exactly the same way as before, and they do form a good pair.


## Theorem (Hoyt'12)

Good pairs $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ are classified by colored pyramids: pyramids with two different colors (+ and -) of bricks.

- It makes sense to write $\mathcal{W}_{\pi}=\mathcal{W}_{\left(e_{\pi}, h_{\pi}\right)}$ and every $W$-superalgebra must be of this form due the the theorem above.
- The pyramid $\pi$ now can be uniquely recorded by a triple $(\sigma, \ell, \mathfrak{b})$ where $\sigma$ is a shift matrix of size $m+n$, $\ell$ is the number of boxes in the bottom row of $\pi$, and $\mathfrak{b}$ is the 01 -sequence recording the color of


## Pyramids and 01-sequence

- Labeling + boxes with $1, \cdots, M$ and - boxes with $\overline{1}, \cdots, \bar{N}$, one can explicitly write down matrices $e_{\pi}$ and $h_{\pi}$ in $\mathfrak{g l}_{M \mid N}$ exactly the same way as before, and they do form a good pair.


## Theorem (Hoyt'12)

Good pairs $(e, h)$ in $\mathfrak{g l}_{M \mid N}$ are classified by colored pyramids: pyramids with two different colors (+ and -) of bricks.

- It makes sense to write $\mathcal{W}_{\pi}=\mathcal{W}_{\left(e_{\pi}, h_{\pi}\right)}$ and every $W$-superalgebra must be of this form due the the theorem above.
- The pyramid $\pi$ now can be uniquely recorded by a triple ( $\sigma, \ell, \mathfrak{b}$ ) where $\sigma$ is a shift matrix of size $m+n, \ell$ is the number of boxes in the bottom row of $\pi$, and $\mathfrak{b}$ is the 01 -sequence recording the color of rows from top to bottom.


## Example

Take the standard basis for superspace with superdimension (9|8).


- $e_{\pi}=e^{+}+e^{-} \in\left(\operatorname{gl}_{9 \mid 8}\right)_{\overline{0}}$, where

- $\left(e_{\pi}, h_{\pi}\right)$ forms a good pair.


## Example

Take the standard basis for superspace with superdimension (9|8).


- $e_{\pi}=e^{+}+e^{-} \in\left(\mathfrak{g l}_{9 \mid 8}\right)_{\overline{0}}$, where

$$
\begin{aligned}
& e^{+}=e_{3,5}+e_{1,2}+e_{2,4}+\cdots+e_{8,9} \in \mathfrak{g l}_{9 \mid 0} \text { and } \\
& e^{-}=e_{2,5}+e_{\overline{3}, \overline{6}}+e_{1, \overline{4}}+e_{4, \overline{7}}+e_{\overline{7, \overline{8}}} \in \mathfrak{g l}_{0 \mid 8}
\end{aligned}
$$

- $\left(e_{\pi}, h_{\pi}\right)$ forms a good pair.


## Example

Take the standard basis for superspace with superdimension (9|8).


- $e_{\pi}=e^{+}+e^{-} \in\left(\mathfrak{g l}_{9 \mid 8}\right)_{\overline{0}}$, where $e^{+}=e_{3,5}+e_{1,2}+e_{2,4}+\cdots+e_{8,9} \in \mathfrak{g l}_{9 \mid 0}$ and $e^{-}=e_{2, \overline{5}}+e_{3, \overline{6}}+e_{\overline{1, \overline{4}}}+e_{4, \overline{7}}+e_{\overline{7}, \overline{8}} \in \mathfrak{g l}_{0 \mid 8}$
- $h_{\pi}=-\operatorname{diag}(-6,-4,-2,-2,0,0,2,4,6 \mid-4,-2,-2,-2,0,0,0,2)$.
- $\left(e_{\pi}, h_{\pi}\right)$ forms a good pair.


## Example

Take the standard basis for superspace with superdimension (9|8).


- $e_{\pi}=e^{+}+e^{-} \in\left(\mathfrak{g l}_{9 \mid 8}\right)_{\overline{0}}$, where $e^{+}=e_{3,5}+e_{1,2}+e_{2,4}+\cdots+e_{8,9} \in \mathfrak{g l}_{9 \mid 0}$ and $e^{-}=e_{2, \overline{5}}+e_{\overline{3}, \overline{6}}+e_{1, \overline{4}}+e_{4, \overline{7}}+e_{\overline{7}, \overline{8}} \in \mathfrak{g l}_{0 \mid 8}$
- $h_{\pi}=-\operatorname{diag}(-6,-4,-2,-2,0,0,2,4,6 \mid-4,-2,-2,-2,0,0,0,2)$.
- $\left(e_{\pi}, h_{\pi}\right)$ forms a good pair.


## Example(continued)

The corresponding shift matrix is given by

$$
\sigma=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
1 & 1 & 1 & 0 & 2 \\
2 & 2 & 2 & 1 & 0
\end{array}\right)
$$

- $\mathfrak{b}=11010$ is the corresponding 01-sequence.
- $\mu=(3,1,1)$ is the minimal admissible shape.
- $\ell=7$, the number of boxes in the bottom row of $\pi$
- $\{(e, h)\} \stackrel{1: 1}{\stackrel{1}{\longleftrightarrow}}\{(\sigma, l, b)\}$ in the supercase


## Example(continued)

The corresponding shift matrix is given by

$$
\sigma=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
1 & 1 & 1 & 0 & 2 \\
2 & 2 & 2 & 1 & 0
\end{array}\right)
$$

- $\mathfrak{b}=11010$ is the corresponding 01-sequence.
- $\mu=(3,1,1)$ is the minimal admissible shape.
- $\ell=7$, the number of boxes in the bottom row of $\pi$.
- $\{(e, h)\} \stackrel{1: 1}{\stackrel{1}{\longrightarrow}}\{(\sigma, l, b)\}$ in the supercase.


## Example(continued)

The corresponding shift matrix is given by

$$
\sigma=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
1 & 1 & 1 & 0 & 2 \\
2 & 2 & 2 & 1 & 0
\end{array}\right)
$$

- $\mathfrak{b}=11010$ is the corresponding 01-sequence.
- $\mu=(3,1,1)$ is the minimal admissible shape.
- $\ell=7$, the number of boxes in the bottom row of $\pi$
- $\{(e, h)\} \stackrel{1: 1}{\longleftrightarrow}\{(\sigma, \ell, \mathfrak{b})\}$ in the supercase.


## Example(continued)

The corresponding shift matrix is given by

$$
\sigma=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
1 & 1 & 1 & 0 & 2 \\
2 & 2 & 2 & 1 & 0
\end{array}\right)
$$

- $\mathfrak{b}=11010$ is the corresponding 01-sequence.
- $\mu=(3,1,1)$ is the minimal admissible shape.
- $\ell=7$, the number of boxes in the bottom row of $\pi$.
- $\{(e, h)\} \stackrel{1: 1}{\longleftrightarrow}\{(\sigma, \ell, \mathfrak{b})\}$ in the supercase.


## Example(continued)

The corresponding shift matrix is given by

$$
\sigma=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 \\
1 & 1 & 1 & 0 & 2 \\
2 & 2 & 2 & 1 & 0
\end{array}\right)
$$

- $\mathfrak{b}=11010$ is the corresponding 01-sequence.
- $\mu=(3,1,1)$ is the minimal admissible shape.
- $\ell=7$, the number of boxes in the bottom row of $\pi$.
- $\{(e, h)\} \stackrel{1: 1}{\longleftrightarrow}\{(\sigma, \ell, \mathfrak{b})\}$ in the supercase.


## The Yangian associated to $\mathfrak{g l}_{m \mid n}$

- The Yangian associated to $\mathfrak{g l}_{m \mid n}$, denoted by $Y_{m \mid n}$, is defined [Nazarov'91, LMP] in terms of RTT presentation as a super analogue of $Y_{m}$.
- It requires parabolic presentations to define the shifted super Yangian, but we still need some preparation first for the super setting.


## The Yangian associated to $\mathfrak{g l}_{m \mid n}$

- The Yangian associated to $\mathfrak{g l}_{m \mid n}$, denoted by $Y_{m \mid n}$, is defined [Nazarov'91, LMP] in terms of RTT presentation as a super analogue of $Y_{m}$.
- It requires parabolic presentations to define the shifted super Yangian, but we still need some preparation first for the super setting.


## The Yangian associated to $\mathfrak{g l}_{m \mid n}$

- Let $\mathfrak{b}$ be a fixed $0^{m} 1^{n}$-sequence and let $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ be a composition of $m+n$.
- Decompose $\mathfrak{b}$ into $z$ subsequence $\mathfrak{b}_{1} \mathfrak{b}_{2} \ldots \mathfrak{b}_{z}$ in the obvious way.
- For example, $\mu=(3,1,1)$ and $\mathfrak{b}=11001$ in $Y_{2 \mid 3}$

- For each $1 \leq a \leq z$ and each $1 \leq k \leq \mu_{a}$, define the restricted parity

$$
|k|_{a}:=\text { the } k \text {-th digit of } b_{a}
$$

## The Yangian associated to $\mathfrak{g l}_{m \mid n}$

- Let $\mathfrak{b}$ be a fixed $0^{m} 1^{n}$-sequence and let $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ be a composition of $m+n$.
- Decompose $\mathfrak{b}$ into $z$ subsequence $\mathfrak{b}_{1} \mathfrak{b}_{2} \ldots \mathfrak{b}_{z}$ in the obvious way.
- For example, $\mu=(3,1,1)$ and $\mathfrak{b}=11001$ in $Y_{2 \mid 3}$

- For each $1 \leq a \leq z$ and each $1 \leq k \leq \mu_{\mathrm{a}}$, define the restricted parity

$$
|k|_{a}:=\text { the } k \text {-th digit of } b_{a}
$$

## The Yangian associated to $\mathfrak{g l}_{m \mid n}$

- Let $\mathfrak{b}$ be a fixed $0^{m} 1^{n}$-sequence and let $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ be a composition of $m+n$.
- Decompose $\mathfrak{b}$ into $z$ subsequence $\mathfrak{b}_{1} \mathfrak{b}_{2} \ldots \mathfrak{b}_{z}$ in the obvious way.
- For example, $\mu=(3,1,1)$ and $\mathfrak{b}=11001$ in $Y_{2 \mid 3}$

- For each $1 \leq a \leq z$ and each $1 \leq k \leq \mu_{a}$, define the restricted parity $|k|_{a}:=$ the $k$-th digit of $\mathfrak{b}_{a}$


## The Yangian associated to $\mathfrak{g l}_{m \mid n}$

- Let $\mathfrak{b}$ be a fixed $0^{m} 1^{n}$-sequence and let $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ be a composition of $m+n$.
- Decompose $\mathfrak{b}$ into $z$ subsequence $\mathfrak{b}_{1} \mathfrak{b}_{2} \ldots \mathfrak{b}_{z}$ in the obvious way.
- For example, $\mu=(3,1,1)$ and $\mathfrak{b}=11001$ in $Y_{2 \mid 3}$

$$
\mathfrak{b}=\overbrace{110}^{\mathfrak{b}_{1}} \overbrace{0}^{\mathfrak{b}_{2}} \overbrace{1}^{\mathfrak{b}_{3}} .
$$

- For each $1 \leq a \leq z$ and each $1 \leq k \leq \mu_{a}$, define the restricted parity

$$
|k|_{a}:=\text { the } k \text {-th digit of } \mathfrak{b}_{a}
$$

## Parabolic presentation of $Y_{m \mid n}$

## Theorem ( $\mathrm{P}^{\prime} 16, \mathrm{CMP}$ )

Let $\mu=\left(\mu_{1}, \ldots, \mu_{z}\right)$ be any composition of $m+n$ and $\mathfrak{b}$ be any $0^{m} 1^{n}$-sequence. Define $Y_{\mu, \mathfrak{b}}$, or simply $Y_{\mu}$ for short, to be the abstract superalgebra generated by the following symbols

$$
\begin{aligned}
& \left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z, 1 \leq i, j \leq \mu_{a}, r \in \mathbb{Z}_{\geq 0}\right\} \\
& \left\{E_{b ; h, k}^{(t)} \mid 1 \leq b<z, 1 \leq h \leq \mu_{a}, 1 \leq k \leq \mu_{a+1}, t \in \mathbb{Z}_{\geq 1}\right\}, \\
& \left\{F_{b ; k, h}^{(t)} \mid 1 \leq b<z, 1 \leq h \leq \mu_{a}, 1 \leq k \leq \mu_{a+1}, t \in \mathbb{Z}_{\geq 1}\right\}
\end{aligned}
$$

subject to certain relations (depending on $\mu$ and $\mathfrak{b}$ ). Then we have $Y_{\mu} \cong Y_{m \mid n}$ as a superalgebra. Moreover, the definition is independent of the choices of $\mu$ and $\mathfrak{b}$ up to isomorphism.

## Parabolic presentation of $Y_{m \mid n}$

- We should explain how to define the parities of the generators.
- The parity of $D_{a ; i, j}^{(r)}, r>0$ is defined by

$$
\left|D_{a ; i, j}^{(r)}\right|:=|i|_{a}+|j|_{a}(\bmod 2)
$$

- Similarly we set
$\left|E_{b ; h, k}^{(t)}\right|:=|h|_{b}+|k|_{b+1}(\bmod 2)$ and $\left|F_{b ; k, h}^{(t)}\right|:=|k|_{b+1}+|h|_{b}(\bmod 2)$
- Keep in mind that they are determined by a given $\mathfrak{b}$.


## Parabolic presentation of $Y_{m \mid n}$

- We should explain how to define the parities of the generators.
- The parity of $D_{a ; i, j}^{(r)}, r>0$ is defined by

$$
\left|D_{a ; i, j}^{(r)}\right|:=|i|_{a}+|j|_{a}(\bmod 2)
$$

- Similarly we set
$\left|E_{b ; h, k}^{(t)}\right|:=|h|_{b}+|k|_{b+1}(\bmod 2)$ and $\left|F_{b ; k, h}^{(t)}\right|:=|k|_{b+1}+|h|_{b}(\bmod 2)$
- Keep in mind that they are determined by a given $\mathfrak{b}$.


## Parabolic presentation of $Y_{m \mid n}$

- We should explain how to define the parities of the generators.
- The parity of $D_{a ; i, j}^{(r)}, r>0$ is defined by

$$
\left|D_{a ; i, j}^{(r)}\right|:=|i|_{a}+|j|_{a}(\bmod 2)
$$

- Similarly we set

$$
\left|E_{b ; h, k}^{(t)}\right|:=|h|_{b}+|k|_{b+1}(\bmod 2) \quad \text { and } \quad\left|F_{b ; k, h}^{(t)}\right|:=|k|_{b+1}+|h|_{b}(\bmod 2)
$$

- Keep in mind that they are determined by a given $\mathfrak{b}$.


## Parabolic presentation of $Y_{m \mid n}$

- We should explain how to define the parities of the generators.
- The parity of $D_{a ; i, j}^{(r)}, r>0$ is defined by

$$
\left|D_{a ; i, j}^{(r)}\right|:=|i|_{a}+|j|_{a}(\bmod 2)
$$

- Similarly we set

$$
\left|E_{b ; h, k}^{(t)}\right|:=|h|_{b}+|k|_{b+1}(\bmod 2) \quad \text { and } \quad\left|F_{b ; k, h}^{(t)}\right|:=|k|_{b+1}+|h|_{b}(\bmod 2)
$$

- Keep in mind that they are determined by a given $\mathfrak{b}$.


## Defining Relations for $Y_{\mu}=Y_{m \mid n}$

$$
\begin{aligned}
D_{a ; i, j}^{(0)} & =\delta_{i j} \\
\sum_{t=0}^{r} D_{a ; i, p}^{(t)} D_{a ; p, j}^{\prime(r-t)} & =\delta_{r 0} \delta_{i j} \\
{\left[D_{a ; i, j}^{(r)}, D_{b ; h, k}^{(s)}\right]=} & \delta_{a b}(-1)^{|i|_{a}|j|_{a}+|i|_{a}|h|_{a}+|j|_{a}|h|_{a}} \times \\
& \sum_{t=0}^{\min (r, s)-1}\left(D_{a ; h, j}^{(t)} D_{a ; i, k}^{(r+s-1-t)}-D_{a ; h, j}^{(r+s-1-t)} D_{a ; i, k}^{(t)}\right)
\end{aligned}
$$

## Defining Relations for $Y_{\mu}=Y_{m \mid n}$ (continued)

$$
\begin{aligned}
{\left[D_{a ; i, j}^{(r)}, E_{b ; h, k}^{(s)}\right]=} & \delta_{a, b} \delta_{h j}(-1)^{|h|_{a}|j|_{a}} \sum_{t=0}^{r-1} D_{a ; i, p}^{(t)} E_{b ; p, k}^{(r+s-1-t)} \\
& -\delta_{a, b+1}(-1)^{|h|_{b}|k|_{a}+|h|_{b}|j|_{a}+|j|_{a}|k|_{a}} \sum_{t=0}^{r-1} D_{a ; i, k}^{(t)} E_{b ; h, j}^{(r+s-1-t)} \\
{\left[D_{a ; i, j}^{(r)}, F_{b ; h, k}^{(s)}\right]=} & \delta_{a, b}(-1)^{|i|_{a}|j|_{a}+|h|_{a+1}|i|_{a}+|h|_{a+1}|j|_{a}} \sum_{t=0}^{r-1} F_{b ; h, p}^{(r+s-1-t)} D_{a ; p, j}^{(t)} \\
& +\delta_{a, b+1}(-1)^{|h|_{a}|k|_{b}+|h|_{a}|j|_{a}+|j|_{a}|k|_{b}} \sum_{t=0}^{r-1} F_{b ; i, k}^{(r+s-1-t)} D_{a ; h, j}^{(t)}
\end{aligned}
$$

## Defining Relations for $Y_{\mu}=Y_{m \mid n}$ (continued)

$$
\begin{aligned}
& {\left[E_{a ; i, j}^{(r)}, F_{b ; h, k}^{(s)}\right]} \\
& \quad=\delta_{a, b}(-1)^{|h|_{a+1}|k|_{a}+|j|_{a+1}|k|_{a}+|h|_{a+1}|j|_{a+1}+1} \sum_{t=0}^{r+s-1} D_{a ; i, k}^{(r+s-1-t)} D_{a+1 ; h, j}^{(t)}, \\
& {\left[E_{a ; i, j}^{(r)}, E_{a ; h, k}^{(s)}\right]=(-1)^{|h|_{a}|j|_{a+1}+|j|_{a+1}|k|_{a+1}+|h|_{a}|k|_{a+1} \times}} \\
& \qquad\left(\sum_{t=1}^{s-1} E_{a ; i, k}^{(r+s-1-t)} E_{a ; h, j}^{(t)}-\sum_{t=1}^{r-1} E_{a ; i, k}^{(r+s-1-t)} E_{a ; h, j}^{(t)}\right) \\
& {\left[F_{a ; i, j}^{(r)}, F_{a ; h, k}^{(s)}\right]=(-1)^{|h|_{a+1}|j|_{a}+|j|_{a}|k|_{a}+|h|_{a+1}|k|_{a} \times}} \\
& \left(\sum_{t=1}^{r-1} F_{a ; i, k}^{(r+s-1-t)} F_{a ; h, j}^{(t)}-\sum_{t=1}^{s-1} F_{a ; i, k}^{(r+s-1-t)} F_{a ; h, j}^{(t)}\right)
\end{aligned}
$$

## Defining Relations for $Y_{\mu}=Y_{m \mid n}$ (continued)

$$
\begin{aligned}
& {\left[E_{a ; i, j}^{(r+1)}, E_{a+1 ; h, k}^{(s)}\right]-\left[E_{a ; i, j}^{(r)}, E_{a+1 ; h, k}^{(s+1)}\right]} \\
& =(-1)^{|j|_{a+1}|h|_{a+1}} \delta_{h, j} E_{a ; i, q}^{(r)} E_{a+1 ; q, k}^{(s)}, \\
& \begin{array}{r}
{\left[F_{a ; i, j}^{(r+1)}, F_{a+1 ; h, k}^{(s)}\right]-\left[F_{a ; i, j}^{(r)}, F_{a+1 ; h, k}^{(s+1)}\right]} \\
\\
\quad=(-1)^{\left.\left|i i_{a+1}\left(|j|_{a}+|h|_{a+2}\right)+|j|_{a}\right| h\right|_{a+2}+1} \delta_{i, k} F_{a+1 ; h, q}^{(s)} F_{a ; q, j}^{(r)},
\end{array}
\end{aligned}
$$

$$
\left[E_{a ; i, j}^{(r)}, E_{b ; h, k}^{(s)}\right]=0 \quad \text { if } \quad|b-a|>1 \quad \text { or } \quad \text { if } b=a+1 \text { and } h \neq j
$$

$$
\left[F_{a ; i, j}^{(r)}, F_{b ; h, k}^{(s)}\right]=0
$$

$$
\text { if }|b-a|>1 \quad \text { or } \quad \text { if } b=a+1 \text { and } i \neq k
$$

## Defining Relations for $Y_{\mu}=Y_{m \mid n}$ (continued)

$$
\begin{gathered}
{\left[E_{a ; i, j}^{(r)},\left[E_{a ; h, k}^{(s)}, E_{b ; f, g}^{(t)}\right]\right]+\left[E_{a ; i, j}^{(s)},\left[E_{a ; h, k}^{(r)}, E_{b ; f, g}^{(t)}\right]\right]=0 \quad \text { if }|a-b| \geq 1,} \\
{\left[F_{a ; i, j}^{(r)},\left[F_{a ; h, k}^{(s)}, F_{b ; f, g}^{(t)}\right]\right]+\left[F_{a ; i, j}^{(s)},\left[F_{a ; h, k}^{(r)}, F_{b ; f, g}^{(t)}\right]\right]=0 \quad \text { if }|a-b| \geq 1,} \\
{\left[\left[E_{a ; i, f_{1}}^{(r)}, E_{a+1 ; f_{2}, j}^{(1)}\right],\left[E_{a+1 ; h, g_{1}}^{(1)}, E_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0 \text { when }|h|_{a+1}+|j|_{a+2}=1,} \\
{\left[\left[F_{a ; i, f_{1}}^{(r)}, F_{a+1 ; f_{2}, j}^{(1)}\right],\left[F_{a+1 ; h, g_{1}}^{(1)}, F_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0 \text { when }|j|_{a+1}+|h|_{a+2}=1,}
\end{gathered}
$$

Last two: appear when $z \geq 4$, super phenomenon, didn't appear in [BK'05]. These come from similar relations given in [Gow'07, CMP], which are the special case when $\mu=\left(1^{m+n}\right)$ and standard $\mathfrak{b}$ in our setting.

## Shifted super Yangian $Y_{m \mid n}(\sigma)$

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall $\pi \longleftrightarrow(\sigma, \ell, \mathrm{b})$.
- Choose a composition $\mu$ admissible to $\sigma$, we can define shifted super Yangian $Y_{\mu}(\sigma)$ exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to $W$-superalgebra, we need a presentation of $Y_{\mu}(\sigma)$; that is, we need to explicitly write down the defining relations of $Y_{\mu}(\sigma)$ as well


## Shifted super Yangian $Y_{m \mid n}(\sigma)$

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall $\pi \longleftrightarrow(\sigma, \ell, \mathfrak{b})$.
- Choose a composition $\mu$ admissible to $\sigma$, we can define shifted super Yangian $Y_{\mu}(\sigma)$ exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to W-superalgebra, we need a presentation of $Y_{\mu}(\sigma)$; that is, we need to explicitly write down the defining relations of $Y_{\mu}(\sigma)$ as well.


## Shifted super Yangian $Y_{m \mid n}(\sigma)$

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall $\pi \longleftrightarrow(\sigma, \ell, \mathfrak{b})$.
- Choose a composition $\mu$ admissible to $\sigma$, we can define shifted super Yangian $Y_{\mu}(\sigma)$ exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to W-superalgebra, we need a presentation of $Y_{\mu}(\sigma)$; that is, we need to explicitly write down the defining relations of $Y_{\mu}(\sigma)$ as well.


## Shifted super Yangian $Y_{m \mid n}(\sigma)$

- Following the same logic in the classical case, we use the parabolic presentation to define the subalgebra we need.
- Recall $\pi \longleftrightarrow(\sigma, \ell, \mathfrak{b})$.
- Choose a composition $\mu$ admissible to $\sigma$, we can define shifted super Yangian $Y_{\mu}(\sigma)$ exactly the same way as before: take a subset of the parabolic generators and use them to generate a subalgebra.
- Again, to establish the connection to $W$-superalgebra, we need a presentation of $Y_{\mu}(\sigma)$; that is, we need to explicitly write down the defining relations of $Y_{\mu}(\sigma)$ as well.


## Main result 1

Set $\mathcal{P}_{\mu, \sigma}$ to be the union of the symbols
$\left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z ; 1 \leq i, j \leq \mu_{a} ; r \geq 0\right\}$,
$\left\{E_{b ; h, k}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b, b+1}^{\mu}\right\}$,
$\left\{F_{b ; k, h}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b+1, b}^{\mu}\right\}$, where their parities are determined by the 01-sequence $\mathfrak{b}$.

## Theorem (P'21, Adv. Math.)

The shifted super Yangian $Y_{\mu}(\sigma)$ is the abstract superalgebra generated by $\mathcal{P}_{\mu, \sigma}$ subjected to a set of defining relations.

## Main result 1

Set $\mathcal{P}_{\mu, \sigma}$ to be the union of the symbols
$\left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z ; 1 \leq i, j \leq \mu_{a} ; r \geq 0\right\}$,
$\left\{E_{b ; h, k}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b, b+1}^{\mu}\right\}$,
$\left\{F_{b ; k, h}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b+1, b}^{\mu}\right\}$, where their parities are determined by the 01-sequence $\mathfrak{b}$.

## Theorem (P'21, Adv. Math.)

The shifted super Yangian $Y_{\mu}(\sigma)$ is the abstract superalgebra generated by $\mathcal{P}_{\mu, \sigma}$ subjected to a set of defining relations.

- One can identify $Y_{\mu}(\sigma)$ as a subalgebra of $Y_{\mu}=Y_{m \mid n}$ by identifying the symbols in $\mathcal{P}_{\mu, \sigma}$ to corresponding elements in $Y_{\mu}$ sharing the same name (obtained via quasideterminant).
- Furthermore, $Y_{\mu}(\sigma)=Y_{\nu}(\sigma)$ for any $\mu, \nu$ admissible to $\sigma$.


## Main result 1

Set $\mathcal{P}_{\mu, \sigma}$ to be the union of the symbols
$\left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z ; 1 \leq i, j \leq \mu_{a} ; r \geq 0\right\}$,
$\left\{E_{b ; h, k}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b, b+1}^{\mu}\right\}$,
$\left\{F_{b ; k, h}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b+1, b}^{\mu}\right\}$, where their parities are determined by the 01-sequence $\mathfrak{b}$.

## Theorem (P'21, Adv. Math.)

The shifted super Yangian $Y_{\mu}(\sigma)$ is the abstract superalgebra generated by $\mathcal{P}_{\mu, \sigma}$ subjected to a set of defining relations.

- One can identify $Y_{\mu}(\sigma)$ as a subalgebra of $Y_{\mu}=Y_{m \mid n}$ by identifying the symbols in $\mathcal{P}_{\mu, \sigma}$ to corresponding elements in $Y_{\mu}$ sharing the same name (obtained via quasideterminant).

[^0]
## Main result 1

Set $\mathcal{P}_{\mu, \sigma}$ to be the union of the symbols
$\left\{D_{a ; i, j}^{(r)}, D_{a ; i, j}^{\prime(r)} \mid 1 \leq a \leq z ; 1 \leq i, j \leq \mu_{a} ; r \geq 0\right\}$,
$\left\{E_{b ; h, k}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b, b+1}^{\mu}\right\}$,
$\left\{F_{b ; k, h}^{(t)} \mid 1 \leq b<z ; 1 \leq h \leq \mu_{b}, 1 \leq k \leq \mu_{b+1} ; t>s_{b+1, b}^{\mu}\right\}$, where their parities are determined by the 01-sequence $\mathfrak{b}$.

## Theorem (P'21, Adv. Math.)

The shifted super Yangian $Y_{\mu}(\sigma)$ is the abstract superalgebra generated by $\mathcal{P}_{\mu, \sigma}$ subjected to a set of defining relations.

- One can identify $Y_{\mu}(\sigma)$ as a subalgebra of $Y_{\mu}=Y_{m \mid n}$ by identifying the symbols in $\mathcal{P}_{\mu, \sigma}$ to corresponding elements in $Y_{\mu}$ sharing the same name (obtained via quasideterminant).
- Furthermore, $Y_{\mu}(\sigma)=Y_{\nu}(\sigma)$ for any $\mu, \nu$ admissible to $\sigma$.


## Main result 1

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in $Y_{\mu}(\sigma)$.
- The most difficult part is to show the "extra" relations hold in $Y_{\mu}$ :

- The proof in [P'16] only works for $t=1$.
- We prove them by a reverse induction on the length of $\mu$, where the initial step $\left(\mu=\left(1^{m+n}\right)\right)$ is established in a remark of [Tsymbaliuk'20, LMP].


## Main result 1

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in $Y_{\mu}(\sigma)$.
- The most difficult part is to show the "extra" relations hold in $Y_{\mu}$ :
$\left[\left[E_{a ; i, f_{1}}^{(r)}, E_{a+1 ; f_{2}, j}^{(t)}\right],\left[E_{a+1 ; h, g_{1}}^{(t)}, E_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0$ when $|h|_{a+1}+|j|_{a+2}=1$,
$\left[\left[F_{a ; i, f_{1}}^{(r)}, F_{a+1 ; f_{2}, j}^{(t)}\right],\left[F_{a+1 ; h, g_{1}}^{(t)}, F_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0$ when $|j|_{a+1}+|h|_{a+2}=1$, for all $t>s_{a+1, a+2}^{\mu}$ and $t>s_{a+2, a+1}^{\mu}$.
- The proof in [P'16] only works for $t=1$.
- We prove them by a reverse induction on the length of $\mu$, where the initial step $\left(\mu=\left(1^{m+n}\right)\right)$ is established in a remark of


## Main result 1

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in $Y_{\mu}(\sigma)$.
- The most difficult part is to show the "extra" relations hold in $Y_{\mu}$ :

$$
\left[\left[E_{a ; i, f_{1}}^{(r)}, E_{a+1 ; f_{2}, j}^{(t)}\right],\left[E_{a+1 ; h, g_{1}}^{(t)}, E_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0 \text { when }|h|_{a+1}+|j|_{a+2}=1,
$$

$$
\left[\left[F_{a ; i, f_{1}}^{(r)}, F_{a+1 ; f_{2}, j}^{(t)}\right],\left[F_{a+1 ; h, g_{1}}^{(t)}, F_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0 \text { when }|j|_{a+1}+|h|_{a+2}=1
$$ for all $t>s_{a+1, a+2}^{\mu}$ and $t>s_{a+2, a+1}^{\mu}$.

- The proof in [P'16] only works for $t=1$.
- We prove them by a reverse induction on the length of $\mu$, where the initial step $\left(\mu=\left(1^{m+n}\right)\right)$ is established in a remark of


## Main result 1

- The defining relations are obtained by modifying the relations in [P'16] so that they make sense in $Y_{\mu}(\sigma)$.
- The most difficult part is to show the "extra" relations hold in $Y_{\mu}$ :

$$
\left[\left[E_{a ; i, f_{1}}^{(r)}, E_{a+1 ; f_{2}, j}^{(t)}\right],\left[E_{a+1 ; h, g_{1}}^{(t)}, E_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0 \text { when }|h|_{a+1}+|j|_{a+2}=1,
$$

$$
\left[\left[F_{a ; i, f_{1}}^{(r)}, F_{a+1 ; f_{2}, j}^{(t)}\right],\left[F_{a+1 ; h, g_{1}}^{(t)}, F_{a+2 ; g_{2}, k}^{(s)}\right]\right]=0 \text { when }|j|_{a+1}+|h|_{a+2}=1
$$ for all $t>s_{a+1, a+2}^{\mu}$ and $t>s_{a+2, a+1}^{\mu}$.

- The proof in [P'16] only works for $t=1$.
- We prove them by a reverse induction on the length of $\mu$, where the initial step $\left(\mu=\left(1^{m+n}\right)\right)$ is established in a remark of [Tsymbaliuk'20, LMP].


## Main result 2

- Similarly, define $I_{\ell}$ to be the 2-sided ideal of $Y_{\mu}(\sigma)$ generated by

$$
\left\{D_{1 ; i, j}^{(r)} \mid 1 \leq i, j \leq \mu_{1}, r \geq p_{1}\right\},
$$

and let $Y_{\mu}^{\ell}(\sigma)$ denote the quotient $Y_{\mu}(\sigma) / \ell_{\ell}$.

## Theorem (P'21, Adv. Math.) <br> There exists a superalgebra isomorphism between $Y_{\mu}^{\ell}(\sigma)$ and $\mathcal{W}_{\pi}$

- Note that the definition of $\mathcal{W}_{e, h}$ is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all $W$-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite W-superalgebra and its representation theory in the future.


## Main result 2

- Similarly, define $I_{\ell}$ to be the 2-sided ideal of $Y_{\mu}(\sigma)$ generated by

$$
\left\{D_{1 ; i, j}^{(r)} \mid 1 \leq i, j \leq \mu_{1}, r \geq p_{1}\right\}
$$

and let $Y_{\mu}^{\ell}(\sigma)$ denote the quotient $Y_{\mu}(\sigma) / I_{\ell}$.

## Theorem (P'21, Adv. Math.)

There exists a superalgebra isomorphism between $Y_{\mu}^{\ell}(\sigma)$ and $\mathcal{W}_{\pi}$.

- Note that the definition of $\mathcal{W}_{e, h}$ is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all W-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite $W$-superalgebra and its representation theory in the future.


## Main result 2

- Similarly, define $I_{\ell}$ to be the 2-sided ideal of $Y_{\mu}(\sigma)$ generated by

$$
\left\{D_{1 ; i, j}^{(r)} \mid 1 \leq i, j \leq \mu_{1}, r \geq p_{1}\right\}
$$

and let $Y_{\mu}^{\ell}(\sigma)$ denote the quotient $Y_{\mu}(\sigma) / I_{\ell}$.

## Theorem (P'21, Adv. Math.)

There exists a superalgebra isomorphism between $Y_{\mu}^{\ell}(\sigma)$ and $\mathcal{W}_{\pi}$.

- Note that the definition of $\mathcal{W}_{e, h}$ is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all $W$-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite
W-superalgebra and its representation theory in the future.


## Main result 2

- Similarly, define $I_{\ell}$ to be the 2-sided ideal of $Y_{\mu}(\sigma)$ generated by

$$
\left\{D_{1 ; i, j}^{(r)} \mid 1 \leq i, j \leq \mu_{1}, r \geq p_{1}\right\}
$$

and let $Y_{\mu}^{\ell}(\sigma)$ denote the quotient $Y_{\mu}(\sigma) / I_{\ell}$.

## Theorem (P'21, Adv. Math.)

There exists a superalgebra isomorphism between $Y_{\mu}^{\ell}(\sigma)$ and $\mathcal{W}_{\pi}$.

- Note that the definition of $\mathcal{W}_{e, h}$ is again independent of the choices of the good grading, due to [Zhao'14]. Hence our results apply to all $W$-superalgebras (up to isomorphism).
- Based on our results, we will continue to study type A finite $W$-superalgebra and its representation theory in the future.


## Some earlier results in super case


$\pi$ : principal
Brown-Brundan-Goodwin'13
No extra relations!

| + | + | + | + |
| :---: | :---: | :---: | :---: |
| + | + | + | + |
| - | - | - | - |
| - | - | - | - |
| - | - | - | - |

$\pi$ : rectangular
Briot-Ragoucy'03
RTT works

## Our New Result


$\pi$ : corresponds to an arbitrary even nilpotent element P'21, Adv. Math.

## Thank you for your attention.


[^0]:    - Furthermore, $Y_{\mu}(\sigma)=Y_{\nu}(\sigma)$ for any $\mu, \nu$ admissible to $\sigma$.

